Skip to main content

Advertisement

Log in

Kappa opioids and the modulation of pain

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background and rationale

Pain is a complex sensory experience, involving cognitive factors, environment (setting, society, and culture), experience, and gender and is modulated significantly by the central nervous system (CNS). The mechanisms by which opioid analgesics work are understood, but this class of drugs is not ideal as either an analgesic or anti-hyperalgesic. Accordingly, considerable effort continues to be directed at improved understanding of nociceptor function and development of selective analgesics that do not have the unwanted effects associated with opioid analgesics.

Objective

The purpose of this paper is to provide a review of the role of KOP receptors in the modulation of pain and highlight several chemotypes currently being explored as peripherally restricted KOP ligands.

Results

A growing body of literature has shown that KOP receptors are implicated in a variety of behavioral pain models. Several different classes of peripherally restricted peptidic and nonpeptidic KOP agonists have been identified and show utility in treating painful conditions.

Conclusion

The pharmacological profile of KOP agonists in visceral pain models suggest that peripherally restricted KOP agonists are potentially useful for a variety of peripheral pain states. Further, clinical investigation of peripherally restricted KOP agonists will help to clarify the painful conditions where KOP agonists will be most effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

KOP:

κ opioid

MOP:

μ opioid

CNS:

Central nervous system

COX:

Cyclooxygenase

PAG:

Periaqueductal gray

References

  • Ackley MA, Hurley RW, Virnich DE, Hammond DL (2001) A cellular mechanism for the antinociceptive effect of a kappa opioid receptor agonist. Pain 91:377–388

    Article  CAS  PubMed  Google Scholar 

  • Aldrich JV, McLaughlin JP (2009) Peptide kappa opioid receptor ligands: potential for drug development. AAPS J 11:312–322

    Article  CAS  PubMed  Google Scholar 

  • Aldrich JV, Vigil-Cruz SC (2003) Narcotic analgesics. In: Abraham DA (ed) Burger’s medicinal chemistry and drug discovery. Wiley, New York, pp 329–441

    Google Scholar 

  • Alreja M, Mutalik P, Nayar U, Manchanda SK (1984) The formalin test: a tonic pain model in the primate. Pain 20:97–105

    Article  CAS  PubMed  Google Scholar 

  • Andreev N, Urban L, Dray A (1994) Opioids suppress spontaneous activity of polymodal nociceptors in rat paw skin induced by ultraviolet irradiation. Neuroscience 58:793–798

    Article  CAS  PubMed  Google Scholar 

  • Ansonoff MA, Zhang J, Czyzyk T, Rothman RB, Stewart J, Xu H, Zjwiony J, Siebert DJ, Yang F, Roth BL, Pintar JE (2006) Antinociceptive and hypothermic effects of Salvinorin A are abolished in a novel strain of kappa-opioid receptor-1 knockout mice. J Pharmacol Exp Ther 318:641–648

    Article  CAS  PubMed  Google Scholar 

  • Arendt-Nielsen L, Olesen AE, Staahl C, Menzaghi F, Kell S, Wong GY, Drewes AM (2009) Analgesic efficacy of peripheral kappa-opioid receptor agonist CR665 compared to oxycodone in a multi-modal, multi-tissue experimental human pain model: selective effect on visceral pain. Anesthesiology 111:616–624

    Article  CAS  PubMed  Google Scholar 

  • Barber A, Bartoszyk GD, Bender HM, Gottschlich R, Greiner HE, Harting J, Mauler F, Minck KO, Murray RD, Simon M et al (1994) A pharmacological profile of the novel, peripherally-selective kappa-opioid receptor agonist, EMD 61753. Br J Pharmacol 113:1317–1327

    CAS  PubMed  Google Scholar 

  • Bender HM, Dasenbrock J (1998) Brain concentrations of asimadoline in mice: the influence of coadministration of various P-glycoprotein substrates. Int J Clin Pharmacol Ther 36:76–79

    CAS  PubMed  Google Scholar 

  • Bennett G, Xie Y (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    Article  CAS  PubMed  Google Scholar 

  • Bickel A, Dorfs S, Schmelz M, Forster C, Uhl W, Handwerker HO (1998) Effects of antihyperalgesic drugs on experimentally induced hyperalgesia in man. Pain 76:317–325

    Article  CAS  PubMed  Google Scholar 

  • Bileviciute-Ljungar I, Saxne T, Spetea M (2006) Anti-inflammatory effects of contralateral administration of the {kappa}-opioid agonist U-50, 488H in rats with unilaterally induced adjuvant arthritis. Rheumatology 45:295–302

    Article  CAS  PubMed  Google Scholar 

  • Binder W, Machelska H, Mousa S, Schmitt T, Riviere PJ, Junien JL, Stein C, Schafer M (2001) Analgesic and antiinflammatory effects of two novel kappa-opioid peptides. Anesthesiology 94:1034–1044

    Article  CAS  PubMed  Google Scholar 

  • Bohn LM, Raehal KM (2006) Opioid receptor signaling: relevance for gastrointestinal therapy. Curr Opin Pharmacol 6:559–563

    Article  CAS  PubMed  Google Scholar 

  • Burton MB, Gebhart GF (1995) Effects of intracolonic acetic acid on responses to colorectal distension in the rat. Brain Res 672:77–82

    Article  CAS  PubMed  Google Scholar 

  • Burton MB, Gebhart GF (1998) Effects of kappa-opioid receptor agonists on responses to colorectal distension in rats with and without acute colonic inflammation. J Pharmacol Exp Ther 285:707–715

    CAS  PubMed  Google Scholar 

  • Byers MR, Narhi MVO (1999) Dental injury models: experimental tools for understanding neuroinflammatory interactions and polymodal nociceptor functions. Crit Rev Oral Biol Med 10:4–39

    Article  CAS  PubMed  Google Scholar 

  • Camilleri M (2008) Novel pharmacology: asimadoline, a kappa-opioid agonist, and visceral sensation. Neurogastroenterol Motil 20:971–979

    Article  CAS  PubMed  Google Scholar 

  • Carlton S, Coggeshall RE (1998) Nociceptive integration: does it have a peripheral component? Pain Forum 7:71–78

    Google Scholar 

  • Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398:436–441

    Article  CAS  PubMed  Google Scholar 

  • Chu GH, Gu M, Cassel JA, Belanger S, Graczyk TM, DeHaven RN, Conway-James N, Koblish M, Little PJ, DeHaven-Hudkins DL, Dolle RE (2005) Potent and highly selective kappa opioid receptor agonists incorporating chroman- and 2, 3-dihydrobenzofuran-based constraints. Bioorg Med Chem Lett 15:5114–5119

    Article  CAS  PubMed  Google Scholar 

  • Chu GH, Gu M, Cassel JA, Belanger S, Graczyk TM, DeHaven RN, Conway-James N, Koblish M, Little PJ, DeHaven-Hudkins DL, Dolle RE (2007) Novel malonamide derivatives as potent kappa opioid receptor agonists. Bioorg Med Chem Lett 17:1951–1955

    Article  CAS  PubMed  Google Scholar 

  • Chu GH, Gu M, Cassel JA, Belanger S, Stabley GJ, DeHaven RN, Conway-James N, Koblish M, Little PJ, DeHaven-Hudkins DL, Dolle RE (2006) Novel phenylamino acetamide derivatives as potent and selective kappa opioid receptor agonists. Bioorg Med Chem Lett 16:645–648

    Article  CAS  PubMed  Google Scholar 

  • Corbett AD, Henderson G, McKnight AT, Paterson SJ (2006) 75 years of opioid research: the exciting but vain quest for the Holy Grail. Br J Pharmacol 147(Suppl 1):S153–S162

    Article  CAS  PubMed  Google Scholar 

  • Craft RM, Carlisi VJ, Mattia A, Herman RM, Porreca F (1993) Behavioral characterization of the excitatory and desensitizing effects of intravesical capsaicin and resiniferatoxin in the rat. Pain 55:205–215

    Article  CAS  PubMed  Google Scholar 

  • Craig A (1991) Spinal distribution of ascending lamina I axons anterogradely labeled with Phaseolus vulgaris leucoagglutinin (PHA-L) in the cat. J Comp Neurol 313:377–393

    Article  CAS  PubMed  Google Scholar 

  • Danzebrink R, Green S, Gebhart GF (1995) Spinal mu and delta, but not kappa, opioid-receptor agonists attenuate responses to noxious colorectal distension in the rat. Pain 63:39–47

    Article  CAS  PubMed  Google Scholar 

  • DeHaven-Hudkins DL, Dolle RE (2004) Peripherally restricted opioid agonists as novel analgesic agents. Curr Pharm Des 10:743–757

    Article  CAS  PubMed  Google Scholar 

  • Delgado-Aros S, Chial HJ, Camilleri M, Szarka LA, Weber FT, Jacob J, Ferber I, McKinzie S, Burton DD, Zinsmeister AR (2003) Effects of a kappa-opioid agonist, asimadoline, on satiation and GI motor and sensory functions in humans. Am J Physiol Gastrointest Liver Physiol 284:G558–G566

    CAS  PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278

    Article  PubMed  Google Scholar 

  • Diop L, Rivière P, Pascaud X, Junien J (1994) Peripheral kappa-opioid receptors mediate the antinociceptive effect of fedotozine (correction of fetodozine) on the duodenal pain reflex in rat. Eur J Pharmacol 271:65–71

    Article  CAS  PubMed  Google Scholar 

  • Dubinsky B, Gebre-Mariam S, Capetola R, Rosenthale M (1987) The antialgesic drugs: human therapeutic correlates of their potency in laboratory animal models of hyperalgesia. Agents Actions 20:50–60

    Article  CAS  PubMed  Google Scholar 

  • Dubner R, Ren K (1999) Endogenous mechanisms of sensory modulation. Pain Suppl 6:S45–S53

    Article  Google Scholar 

  • Dubuisson D, Dennis SG (1977) The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 4:161–174

    Article  CAS  PubMed  Google Scholar 

  • Eddy NB (1948) Pharmacology of metopon and other new analgesic opium derivatives. Ann N Y Acad Sci 51:51–58

    Article  CAS  PubMed  Google Scholar 

  • Eisenach JC, Carpenter R, Curry R (2003) Analgesia from a peripherally active kappa-opioid receptor agonist in patients with chronic pancreatitis. Pain 101:89–95

    Article  CAS  PubMed  Google Scholar 

  • Fernihough J, Gentry C, Malcangio M, Fox A, Rediske J, Pellas T, Kidd B, Bevan S, Winter J (2004) Pain related behaviour in two models of osteoarthritis in the rat knee. Pain 112:83–93

    Article  PubMed  Google Scholar 

  • Field MJ, Carnell AJ, Gonzalez MI, McCleary S, Oles RJ, Smith R, Hughes J, Singh L (1999) Enadoline, a selective kappa-opioid receptor agonist shows potent antihyperalgesic and antiallodynic actions in a rat model of surgical pain. Pain 80:383–389

    Article  CAS  PubMed  Google Scholar 

  • Floyd BN, Camilleri M, Busciglio I, Sweetser S, Burton D, Wong GY, Kell S, Khanna S, Hwang S, Zinsmeister AR (2009) Effect of a kappa-opioid agonist, i.v. JNJ-38488502, on sensation of colonic distensions in healthy male volunteers. Neurogastroenterol Motil 21:281–290

    Article  CAS  PubMed  Google Scholar 

  • Freye E, Hartung E, Schenk GK (1983) Bremazocine: an opiate that induces sedation and analgesia without respiratory depression. Anesth Analg 62:483–488

    Article  CAS  PubMed  Google Scholar 

  • Gebhart GF (1996) Visceral polymodal receptors. Prog Brain Res 113:101–112

    Article  CAS  PubMed  Google Scholar 

  • Gebhart GF, Su X, Joshi S, Ozaki N, Sengupta JN (2000) Peripheral opioid modulation of visceral pain. Ann N Y Acad Sci 909:41–50

    Article  CAS  PubMed  Google Scholar 

  • Gebhart G (1995) Progress in pain research and management visceral pain. International Association for the Study of Pain, International Association for the Study of Pain

  • George SR, Zastawny RL, Brionesurbina R, Cheng R, Nguyen T, Heiber M, Kouvelas A, Chan AS, O’Dowd BF (1994) Distinct Distributions of mu, delta and kappa opioid receptor mRNA in rat brain. Biochem Biophys Res Commun 205:1438–1444

    Article  CAS  PubMed  Google Scholar 

  • Giordano J (2005) the neurobiology of nociceptive and anti-nociceptive systems. Pain Physician 8:227–290

    Google Scholar 

  • Gottschlich R, Barber A, Bartoszyk GD, Seyfried CA (1995) The peripherally acting kappa-opiate agonist EMD 61753 and analogues: opioid activity versus peripheral selectivity. Drugs Exp Clin Res 21:171–174

    CAS  PubMed  Google Scholar 

  • Gruber CM Jr, Lee KS, Gruber CM (1950) A comparison of the actions of meperidine, nu-1196, methadone, morphine, nu-2206, and metopon upon the intestine and uterus. J Pharmacol Exp Ther 99:317–324

    CAS  PubMed  Google Scholar 

  • Gutstein HB, Akil H (2001) Opioid Analgesics. In: Goodman LS, Hardman JG, Limbird LE, Gilman AG (eds) Goodman & Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New York, pp 569–619

    Google Scholar 

  • Harada T, Takahashi H, Kaya H, Inoki R (1979) A test for analgesics as an indicator of locomotor activity in writhing mice. Arch Int Pharmacodyn Ther 242:273–284

    CAS  PubMed  Google Scholar 

  • Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77–88

    Article  CAS  PubMed  Google Scholar 

  • Harvey V, Dickenson A (2009) Behavioural and electrophysiological characterisation of experimentally induced osteoarthritis and neuropathy in C57Bl/6 mice. Molecular Pain 5:18

    Article  PubMed  Google Scholar 

  • Herrero J, Headley PM (1991) The effects of sham and full spinalization on the systemic potency of mu- and kappa-opioids on spinal nociceptive reflexes in rats. Br J Pharmacol 104:166–170

    CAS  PubMed  Google Scholar 

  • Hiramatsu M, Inoue M, Ambo A, Saski Y, Kameyama T (2001) Long-lasting antinociceptive effects of a novel dynorphin analogue, Tyr-D-Ala-Phe-Leu-Arg psi (CH(2)NH) Arg-NH(2), in mice. Br J Pharmacol 132:1948–1956

    Article  CAS  PubMed  Google Scholar 

  • Hooker JM, Munro TA, Beguin C, Alexoff D, Shea C, Xu Y, Cohen BM (2009) Salvinorin A and derivatives: protection from metabolism does not prolong short-term, whole-brain residence. Neuropharmacology 57:386–391

    Article  CAS  PubMed  Google Scholar 

  • Horan PJ, Porreca F (1993) Lack of cross-tolerance between U69, 593 and bremazocine suggests kappa-opioid receptor multiplicity in mice. Eur J Pharmacol 239:93–98

    Article  CAS  PubMed  Google Scholar 

  • Hunskaar S, Hole K (1987) The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 30:103–114

    Article  CAS  PubMed  Google Scholar 

  • Iadarola M, Brady L, Draisci G, Dubner R (1988) Enhancement of dynorphin gene expression in spinal cord following experimental inflammation: stimulus specificity, behavioral parameters and opioid receptor binding. Pain 35:312–326

    Article  Google Scholar 

  • John TF, French LG, Erlichman JS (2006) The antinociceptive effect of Salvinorin A in mice. Eur J Pharmacol 545:129–133

    Article  CAS  PubMed  Google Scholar 

  • Kandel E, Schwartz J, Jessell T (2000) Principles of Neural Science, 4th edn. McGraw-Hill, McGraw-Hill

    Google Scholar 

  • Keats AS, Beecher HK (1952) Analgesic potency and side action liability in man of heptazone, WIN 1161-2, 6-methyl dihydromorphine, metopon, levo-isomethadone and pentobarbital sodium, as a further effort to refine methods of evaluation of analgesic drugs. J Pharmacol Exp Ther 105:109–129

    CAS  PubMed  Google Scholar 

  • Keïta H, Kayser V, Guilbaud G (1995) Antinociceptive effect of a kappa-opioid receptor agonist that minimally crosses the blood-brain barrier (ICI 204448) in a rat model of mononeuropathy. Eur J Pharmacol 277:275–280

    Article  PubMed  Google Scholar 

  • Kim S, Chung J (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50:355–363

    Article  CAS  PubMed  Google Scholar 

  • Kumor KM, Haertzen CA, Johnson RE, Kocher T, Jasinski D (1986) Human psychopharmacology of ketocyclazocine as compared with cyclazocine, morphine and placebo. J Pharmacol Exp Ther 238:960–968

    CAS  PubMed  Google Scholar 

  • Larsson M, Arvidsson S, Ekman C, Bayati A (2003) A model for chronic quantitative studies of colorectal sensitivity using balloon distension in conscious mice – effects of opioid receptor agonists. Neurogastroenterol Motil 15:371–381

    Article  CAS  PubMed  Google Scholar 

  • Le Bars D, Gozariu M, Cadden SW (2001) animal models of nociception. Pharmacol Rev 53:597–652

    PubMed  Google Scholar 

  • Le Bourdonnec B, Ajello CW, Seida PR, Susnow RG, Cassel JA, Belanger S, Stabley GJ, DeHaven RN, DeHaven-Hudkins DL, Dolle RE (2005) Arylacetamide kappa opioid receptor agonists with reduced cytochrome P450 2D6 inhibitory activity. Bioorg Med Chem Lett 15:2647–2652

    Article  PubMed  CAS  Google Scholar 

  • Machelska H, Pfluger M, Weber W, Piranvisseh-Volk M, Daubert JD, Dehaven R, Stein C (1999) Peripheral effects of the kappa-opioid agonist EMD 61753 on pain and inflammation in rats and humans. J Pharmacol Exp Ther 290:354–361

    CAS  PubMed  Google Scholar 

  • Mansour A, Fox C, Burke S, Meng F, Thompson R, Akil H, Watson S (1994) Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J Comp Neurol 350:412–438

    Article  CAS  PubMed  Google Scholar 

  • Martin M, Matifas A, Maldonado R, Kieffer B (2003a) Acute antinocioceptive responses in single and combinatorial opioid receptor knockout mice: distinct mu, delta and kappa tones. Eur J NeuroSci 17:701–708

    Article  PubMed  Google Scholar 

  • Martin W, Stewart L, Tarpley J (2003b) Animal models of neuropathic pain. Methods Mol Med 84:233–242

    PubMed  Google Scholar 

  • Martin WR, Fraser HF, Gorodetzky CW, Rosenberg DE (1965) Studies of the dependence-producing potential of the narcotic antagonist 2-cyclopropylmethyl-2′-hydroxy-5, 9-dimethyl-6, 7-benzomorphan (cyclazocine, WIN-20, 740, ARC II-c-3). J Pharmacol Exp Ther 150:426–436

    CAS  PubMed  Google Scholar 

  • Martínez-Gómez M, Cruz Y, Salas M, Hudson R, Pacheco P (1994) Assessing pain threshold in the rat: changes with estrus and time of day. Physiol Behav 55:651–657

    Article  PubMed  Google Scholar 

  • McCurdy CR, Sufka KJ, Smith GH, Warnick JE, Nieto MJ (2006) Antinociceptive profile of salvinorin A, a structurally unique kappa opioid receptor agonist. Pharmacol Biochem Behav 83:109–113

    Article  CAS  PubMed  Google Scholar 

  • McNally GP, Akil H (2002) Opioid peptides and their receptors: overview and function in pain modulation. In: Davis KL (ed) Neuropsychopharmacology: the fifth generation of progress. Lippincott Williams & Wilkins, Philadelphia, pp 35–46

    Google Scholar 

  • Meller ST, Gebhart GF (1997) Intraplantar zymosan as a reliable, quantifiable model of thermal and mechanical hyperalgesia in the rat. Eur J Pain 1:43–52

    Article  CAS  PubMed  Google Scholar 

  • Miampamba M, Chéry-Croze S, Gorry F, Berger F, Chayvialle JA (1994) Inflammation of the colonic wall induced by formalin as a model of acute visceral pain. Pain 57:227–234

    Article  Google Scholar 

  • Millan MJ (1990) [kappa]-Opioid receptors and analgesia. Trends Pharmacol Sci 11:70–76

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ, Czlonkowski A, Morris B, Stein C, Arendt R, Huber A, Hollt V, Herz A (1988) Inflammation of the hind limb as a model of unilateral, localized pain: influence on multiple opioid systems in the spinal cord of the rat. Pain 35:299–312

    Article  CAS  PubMed  Google Scholar 

  • Mochizucki D (2004) Serotonin and noradrenaline reuptake inhibitors in animal models of pain. Hum Psychopharmacol Clin Exp 19:S15–S19

    Article  CAS  Google Scholar 

  • Ness T (1999) Models of visceral nociception. ILAR J 40:119–128

    PubMed  Google Scholar 

  • Obara I, Parkitna JR, Korostynski M, Makuch W, Kaminska D, Przewlocka B, Przewlocki R (2009) Local peripheral opioid effects and expression of opioid genes in the spinal cord and dorsal root ganglia in neuropathic and inflammatory pain. Pain 141:283–291

    Article  CAS  PubMed  Google Scholar 

  • Ossipov MH, Kovelowski CJ, Wheeler-Aceto H, Cowan A, Hunter JC, Lai J, Malan TP Jr, Porreca F (1996) Opioid antagonists and antisera to endogenous opioids increase the nociceptive response to formalin: demonstration of an opioid kappa and delta inhibitory tone. J Pharmacol Exp Ther 277:784–788

    CAS  PubMed  Google Scholar 

  • Panneton W (1991) Primary afferent projections from the upper respiratory tract in the muskrat. J Comp Neurol 308:51–65

    Article  CAS  PubMed  Google Scholar 

  • Peckys D, Landwehrmeyer GB (1999) Expression of mu, kappa, and delta opioid receptor messenger RNA in the human CNS: a 33P in situ hybridization study. Neuroscience 88:1093–1135

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer A, Brantl V, Herz A, Emrich HM (1986) Psychotomimesis mediated by kappa opiate receptors. Science 233:774–776

    Article  CAS  PubMed  Google Scholar 

  • Porreca F, Burks TF (1983) The spinal cord as a site of opioid effects on gastrointestinal transit in the mouse. J Pharmacol Exp Ther 227:22–27

    CAS  PubMed  Google Scholar 

  • Porreca F, Mosberg HI, Hurst R, Hruby VJ, Burks TF (1984) Roles of mu, delta and kappa opioid receptors in spinal and supraspinal mediation of gastrointestinal transit effects and hot-plate analgesia in the mouse. J Pharmacol Exp Ther 230:341–348

    CAS  PubMed  Google Scholar 

  • Porreca F, Mosberg HI, Omnaas JR, Burks TF, Cowan A (1987) Supraspinal and spinal potency of selective opioid agonists in the mouse writhing test. J Pharmacol Exp Ther 240:890–894

    CAS  PubMed  Google Scholar 

  • Prentice T, Joynes RL, Meagher MW, Grau JW (1996) Impact of shock on pain reactivity: III. The magnitude of hypoalgesia observed depends on test location. Behav Neurosci 110:528–541

    Article  CAS  PubMed  Google Scholar 

  • Prisinzano TE, Gebhart GF (2007) Pain overview. In: Taylor JB, Triggle DJ (eds) Comprehensive medicinal chemistry. Elsevier, New York, pp 321–326

    Chapter  Google Scholar 

  • Prisinzano TE, Rothman RB (2008) Salvinorin A analogs as probes in opioid pharmacology. Chem Rev 108:1732–1743

    Article  CAS  PubMed  Google Scholar 

  • Przewlocki R, Przewlocka B (2001) Opioids in chronic pain. Eur J Pharmacol 429:79–91

    Article  CAS  PubMed  Google Scholar 

  • Rau KK, Caudle RM, Cooper BY, Johnson RD (2005) Diverse immunocytochemical expression of opioid receptors in electrophysiologically defined cells of rat dorsal root ganglia. J Chem Neuroanat 29:255–264

    Article  CAS  PubMed  Google Scholar 

  • Ravert H, Bencherif B, Madar I, Frost J (2004) PET imaging of opioid receptors in pain: progress and new directions. Curr Pharm Des 10:759–768

    Article  CAS  PubMed  Google Scholar 

  • Rice ASC, Cimino-Brown D, Eisenach JC, Kontinen VK, Lacroix-Fralish ML, Machin I, Mogil JS, Stöhr T (2008) Animal models and the prediction of efficacy in clinical trials of analgesic drugs: a critical appraisal and call for uniform reporting standards. Pain 139:243–247

    Article  PubMed  Google Scholar 

  • Rice KC (2003) Analgesic research at the National Institutes of Health: State of the Art 1930s to the Present. In: Meldrum ML (ed) Opioids and pain relief: a historical perspective, progress in pain research and management. IASP, Seattle, pp 57–83

    Google Scholar 

  • Riedel W, Neeck G (2001) Nociception, pain, and antinociception: current concepts. Z Rheumatol 60:404–415

    Article  CAS  PubMed  Google Scholar 

  • Rimoy GH, Wright DM, Bhaskar NK, Rubin PC (1994) The cardiovascular and central nervous system effects in the human of U-62066E. A selective opioid receptor agonist. Eur J Clin Pharmacol 46:203–207

    Article  CAS  PubMed  Google Scholar 

  • Rivière P (2004) Peripheral kappa-opioid agonists for visceral pain. Br J Pharmacol 141:1331–1334

    Article  PubMed  CAS  Google Scholar 

  • Schepers RJ, Mahoney JL, Gehrke BJ, Shippenberg TS (2008) Endogenous kappa-opioid receptor systems inhibit hyperalgesia associated with localized peripheral inflammation. Pain 138:423–439

    Article  CAS  PubMed  Google Scholar 

  • Sengupta J, Snider A, Su X, Gebhart GF (1999) Effects of kappa opioids in the inflamed rat colon. Pain 79:175–185

    Article  CAS  PubMed  Google Scholar 

  • Shannon HE, Eberle EL, Mitch CH, McKinzie DL, Statnick MA (2007) Effects of kappa opioid receptor agonists on attention as assessed by a 5-choice serial reaction time task in rats. Neuropharmacology 53:930–941

    Article  CAS  PubMed  Google Scholar 

  • Shippenberg TS, Stein C, Huber A, Millan MJ, Herz A (1988) Motivational effects of opioids in an animal model of prolonged inflammatory pain: alteration in the effects of kappa- but not of mu-receptor agonists. Pain 35:179–186

    Article  CAS  PubMed  Google Scholar 

  • Siegmund E, Cadmus R, Lu G (1957) A method for evaluating both non-narcotic and narcotic analgesics. Proc Soc Exp Biol Med 95:729–731

    CAS  PubMed  Google Scholar 

  • Simonin F, Valverde O, Smadja C, Slowe S, Kitchen I, Dierich A, Le Meur M, Roques BP, Maldonado R, Kieffer BL (1998) Disruption of the kappa-opioid receptor gene in mice enhances sensitivity to chemical visceral pain, impairs pharmacological actions of the selective kappa-agonist U-50, 488H and attenuates morphine withdrawal. EMBO J 17:886–897

    Article  CAS  PubMed  Google Scholar 

  • Small L, Fitch HM, Smith WE (1936) The addition of organomagnesium halides to pseudocodeine types. II. Preparation of nuclear alkylated morphine derivatives. J Am Chem Soc 58:1457–1463

    Article  CAS  Google Scholar 

  • Spanagel R, Herz A, Shippenberg T (1992) Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc Natl Acad Sci USA 89:2046–2050

    Article  CAS  PubMed  Google Scholar 

  • Stein C (1991) Peripheral analgesic actions of opioids. J Pain Symptom Manage 6:119–124

    Article  CAS  PubMed  Google Scholar 

  • Stein C (1993) Peripheral mechanisms of opioid analgesia. Anesth Analg 76:182–191

    Article  CAS  PubMed  Google Scholar 

  • Stein C, Lang LJ (2009) Peripheral mechanisms of opioid analgesia. Curr Opin Pharmacol 9:3–8

    Article  CAS  PubMed  Google Scholar 

  • Stein C, Cabot PJ, Schafer M (1999) Peripheral opioid analgesia: mechanisms and clinical implications. In: Stein C (ed) Opioids in pain control: basic and clinical aspects. Cambridge University Press, Cambridge, pp 96–108

    Google Scholar 

  • Stein C, Gramsch C, Herz A (1990) Intrinsic mechanisms of antinociception in inflammation: local opioid receptors and beta-endorphin. J Neurosci 10:1292–1298

    CAS  PubMed  Google Scholar 

  • Stein C, Millan MJ, Shippenberg TS, Herz A (1988) Peripheral effect of fentanyl upon nociception in inflamed tissue of the rat. Neurosci Lett 84:225–228

    Article  CAS  PubMed  Google Scholar 

  • Stein C, Millan MJ, Shippenberg TS, Peter K, Herz A (1989) Peripheral opioid receptors mediating antinociception in inflammation. Evidence for involvement of mu, delta and kappa receptors. J Pharmacol Exp Ther 248:1269–1275

    CAS  PubMed  Google Scholar 

  • Su X, Sengupta JN, Gebhart GF (1997) Effects of kappa opioid receptor-selective agonists on responses of pelvic nerve afferents to noxious colorectal distension. J Neurophysiol 78:1003–1012

    CAS  PubMed  Google Scholar 

  • Su X, Julia V, Gebhart GF (2000) Effects of intracolonic opioid receptor agonists on polymodal pelvic nerve afferent fibers in the rat. J Neurophysiol 83:963–970

    CAS  PubMed  Google Scholar 

  • Sufka K, Watson G, Nothdurft R, Mogil J (1998) Scoring the mouse formalin test: validation study. Eur J Pain 2:351–358

    Article  PubMed  Google Scholar 

  • Takasaki I, Andoh T, Shiraki K, Kuraishi Y (2000) Allodynia and hyperalgesia induced by herpes simplex virus type-1 infection in mice. Pain 86:95–101

    Article  CAS  PubMed  Google Scholar 

  • Teksin ZS, Lee IJ, Nemieboka NN, Othman AA, Upreti VV, Hassan HE, Syed SS, Prisinzano TE, Eddington ND (2009) Evaluation of the transport, in vitro metabolism and pharmacokinetics of Salvinorin A, a potent hallucinogen. Eur J Pharm Biopharm 72:471–477

    Article  CAS  PubMed  Google Scholar 

  • Tempel A, Zukin RS (1987) Neuroanatomical patterns of the mu, delta, and kappa opioid receptors of rat brain as determined by quantitative in vitro autoradiography. Proc Natl Acad Sci USA 84:4308–4312

    Article  CAS  PubMed  Google Scholar 

  • Tjølsen A, Rosland J, Berge O, Hole K (1991) The increasing-temperature hot-plate test: an improved test of nociception in mice and rats. J Pharmacol Methods 25:241–250

    Article  PubMed  Google Scholar 

  • Tuthill PA, Seida PR, Barker W, Cassel JA, Belanger S, DeHaven RN, Koblish M, Gottshall SL, Little PJ, DeHaven-Hudkins DL, Dolle RE (2004) Azepinone as a conformational constraint in the design of kappa-opioid receptor agonists. Bioorg Med Chem Lett 14:5693–5697

    Article  CAS  PubMed  Google Scholar 

  • Tyers MB (1980) A classification of opiate receptors that mediate antinociception in animals. Br J Pharmacol 69:503–512

    CAS  PubMed  Google Scholar 

  • Unterwald E, Sasson S, Kornetsky C (1987) Evaluation of the supraspinal analgesic activity and abuse liability of ethylketocyclazocine. Eur J Pharmacol 133:275–281

    Article  CAS  PubMed  Google Scholar 

  • Vander Wende C, Margolin S (1956) Analgesic tests based upon experimentally induced acute abdominal pain in rats. Fed Proc 15:494

    Google Scholar 

  • Vanderah TW (2010) Delta and kappa opioid receptors as suitable drug targets for pain. Clin J Pain 26(Suppl 10):S10–S15

    Article  PubMed  Google Scholar 

  • Vanderah TW, Largent-Milnes T, Lai J, Porreca F, Houghten RA, Menzaghi F, Wisniewski K, Stalewski J, Sueiras-Diaz J, Galyean R, Schteingart C, Junien JL, Trojnar J, Riviere PJ (2008) Novel d-amino acid tetrapeptides produce potent antinociception by selectively acting at peripheral kappa-opioid receptors. Eur J Pharmacol 583:62–72

    Article  CAS  PubMed  Google Scholar 

  • Walker J (2003) Anti-inflammatory effects of opioids. Adv Exp Med Biol 521:148–160

    CAS  PubMed  Google Scholar 

  • Walker J, Catheline G, Guillbaud G, Kayser V (1999) Lack of cross-tolerance between the antinociceptive effects of systemic morphine and asmadoline, a peripherially-selective kappa-opioid agonist, in CCI-neuropathic rats. Pain 83:509–516

    Article  CAS  PubMed  Google Scholar 

  • Walker JS, Scott C, Bush KA, Kirkham BW (2000) Effects of the peripherally selective [kappa] -opioid asimadoline, on substance P and CGRP mRNA expression in chronic arthritis of the rat. Neuropeptides 34:193–202

    Article  CAS  PubMed  Google Scholar 

  • Walsh SL, Strain EC, Abreu ME, Bigelow GE (2001) Enadoline, a selective kappa opioid agonist: comparison with butorphanol and hydromorphone in humans. Psychopharmacology 157:151–162

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Gardell LR, Ossipov MH, Vanderah TW, Brennan MB, Hochgeschwender U, Hruby VJ, Malan TP Jr, Lai J, Porreca F (2001) Pronociceptive actions of dynorphin maintain chronic pain. J Neuroscience 21(5):1779–1786

    CAS  Google Scholar 

  • Wang Y, Chen Y, Xu W, Lee DY, Ma Z, Rawls SM, Cowan A, Liu-Chen LY (2008) 2-Methoxymethyl-salvinorin B is a potent kappa opioid receptor agonist with longer lasting action in vivo than salvinorin A. J Pharmacol Exp Ther 324:1073–1083

    Article  CAS  PubMed  Google Scholar 

  • Wesselmann U, Lai J (1997) Mechanisms of referred visceral pain: uterine inflammation in the adult virgin rat results in neurogenic plasma extravasation in the skin. Pain 73:309–317

    Article  CAS  PubMed  Google Scholar 

  • Willis W Jr (1985) The pain system. The neural basis of nocioceptive transmission in the mammalian nervous system. Pain Headache 8:1–346

    PubMed  Google Scholar 

  • Willis WD, Westlund KN (1997) Neuroanatomy of the pain system and of the pathways that modulate pain. J Clin Neurophysiol 14:2–31

    Article  CAS  PubMed  Google Scholar 

  • Wilson JL, Carmody JJ, Walker JS (2000) The importance of the hypothalamo-hypophyseal-adrenal axis to the anti-inflammatory actions of the kappa-opioid agonist PNU-50, 488H in rats with adjuvant arthritis. J Pharmacol Exp Ther 294:1131–1136

    CAS  PubMed  Google Scholar 

  • Xu M, Petraschka M, McLaughlin JP, Westenbroek RE, Caron MG, Lefkowitz RJ, Czyzyk TA, Pintar JE, Chavkin C (2004) Neuropathic pain activates the endogenous kappa opioid system in mouse spinal cord and induces opioid receptor tolerance. J Neuroscience 24:4576–4584

    Article  CAS  Google Scholar 

  • Yoburn B, Morales R, Kelly D, Inturrisi C (1984) Constraints on the tailflick assay: morphine analgesia and tolerance are dependent upon locus of tail stimulation. Life Sci 34:1755–1762

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Zhang Q, Stein C, Schäfer M (1998) Contribution of opioid receptors on primary afferent versus sympathetic neurons to peripheral opioid analgesia. J Pharmacol Exp Ther 286:1000–1006

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Prisinzano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kivell, B., Prisinzano, T.E. Kappa opioids and the modulation of pain. Psychopharmacology 210, 109–119 (2010). https://doi.org/10.1007/s00213-010-1819-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-1819-6

Keywords

Navigation