Skip to main content
Log in

Escitalopram reversed the traumatic stress-induced depressed and anxiety-like symptoms but not the deficits of fear memory

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Posttraumatic stress disorder (PTSD) is a trauma-induced mental disorder characterised by fear extinction dysfunction in which fear circuit monoamines are possibly associated. PTSD often coexists with depressive/anxiety symptoms, and selective serotonin reuptake inhibitors (SSRIs) are recommended to treat PTSD. However, therapeutic mechanisms of SSRIs underlying the PTSD fear symptoms remain unclear.

Objectives

Using a rodent PTSD model, we examined the effects of early SSRI intervention in mood and fear dysfunctions with associated changes of monoamines within the fear circuit areas.

Methods

A 14-day escitalopram (ESC) regimen (5 mg/kg/day) was undertaken in two separate experiments in rats which previously received a protocol of single prolonged stress (SPS). In experiment 1, sucrose preference and elevated T-maze were used to index anhedonia depression and avoidance/escape anxiety profiles. In experiment 2, the percentage of freezing time was measured in a 3-day fear conditioning paradigm. At the end of our study, tissue levels of serotonin (5-HT) in the medial prefrontal cortex, amygdala, hippocampus, and striatum were measured in experiment 1, and the efflux levels of infralimbic (IL) monoamines were measured in experiment 2.

Results

In experiment 1, ESC corrected both behavioural (depression/anxiety) and neurochemical (reduced 5-HT tissue levels in amygdala/hippocampus) abnormalities. In experiment 2, ESC was unable to correct the SPS-impaired retrieval of fear extinction. In IL, ESC increased the efflux level of 5-HT but failed to reverse SPS-reduced dopamine (DA) and noradrenaline (NA).

Conclusions

PTSD-induced mood dysfunction is psychopathologically different from PTSD-induced fear disruption in terms of disequilibrium of monoamines within the fear circuit areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham AD, Neve KA, Lattal KM (2014) Dopamine and extinction: a convergence of theory with fear and reward circuitry. Neurobiol Learn Mem 108:65–77

    Article  PubMed  Google Scholar 

  • American Psychiatric Association. (2013) Diagnostic and statistical manual of mental disorders (5th ed.). Arlington

  • Anastasides N, Beck KD, Pang KC, Servatius RJ, Gilbertson MW, Orr SP, Myers CE (2015) Increased generalization of learned associations is related to re-experiencing symptoms in veterans with symptoms of post-traumatic stress. Stress (Amst, Neth) 18:484–489

    Article  Google Scholar 

  • Aziz MA, Kenford S (2004) Comparability of telephone and face-to-face interviews in assessing patients with posttraumatic stress disorder. J Psychiatr Pract 10:307–313

    Article  PubMed  Google Scholar 

  • Bauer EP (2015) Serotonin in fear conditioning processes. Behav Brain Res 277:68–77

    Article  CAS  PubMed  Google Scholar 

  • Bernardi RE, Lattal KM (2010) A role for alpha-adrenergic receptors in extinction of conditioned fear and cocaine conditioned place preference. Behav Neurosci 124:204–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burghardt NS, Sigurdsson T, Gorman JM, McEwen BS, LeDoux JE (2013) Chronic antidepressant treatment impairs the acquisition of fear extinction. Biol Psychiatry 73:1078–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvo-Torrent ABP, Martinez M (1999) Effect of predatory stress on sucrose intake and behavior on the plus-maze in male mice. Physiol Behav 67:189–196

    Article  CAS  PubMed  Google Scholar 

  • Chaouloff F, Berton O, Mormede P (1999) Serotonin and stress. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 21:28S–32S

    Article  CAS  Google Scholar 

  • Clark RDCJ, Calais LA, Qualls CR, Tuason VB (1999) Divalproex in posttraumatic stress disorder: an open-label clinical trial. J Trauma Stress 12:395–401

    Article  CAS  PubMed  Google Scholar 

  • Corral-Frias NS, Lahood RP, Edelman-Vogelsang KE, French ED, Fellous JM (2013) Involvement of the ventral tegmental area in a rodent model of post-traumatic stress disorder. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 38:350–363

    Article  CAS  Google Scholar 

  • Cukor J, Olden M, Lee F, Difede J (2010) Evidence-based treatments for PTSD, new directions, and special challenges. Ann N Y Acad Sci 1208:82–89

    Article  PubMed  Google Scholar 

  • Davidson JR (2004) Long-term treatment and prevention of posttraumatic stress disorder. J Clin Psychiatry 65(Suppl 1):44–48

    PubMed  Google Scholar 

  • Douglas Bremner JMT, Welter S, Siddiq S, Reed L, Williams C, Heim CM, Nemeroff CB (2004) Treatment of posttraumatic stress disorder with phenytoin: an open-label pilot study. J Clin Psychiatry 65:1559–1564

    Article  CAS  PubMed  Google Scholar 

  • Dubey VK, Ansari F, Vohora D, Khanam R (2015) Possible involvement of corticosterone and serotonin in antidepressant and antianxiety effects of chromium picolinate in chronic unpredictable mild stress induced depression and anxiety in rats. J Trace Elements Med Biol: Organ Soc Minerals Trace Elements (GMS) 29:222–226

    Article  CAS  Google Scholar 

  • Escalona R, Canive JM, Calais LA, Davidson JR (2002) Fluvoxamine treatment in veterans with combat-related post-traumatic stress disorder. Depression Anxiety 15:29–33

    Article  PubMed  Google Scholar 

  • Fadok JP, Dickerson TM, Palmiter RD (2009) Dopamine is necessary for cue-dependent fear conditioning. J Neurosci: Off J Soc Neurosci 29:11089–11097

    Article  CAS  Google Scholar 

  • Fernandez Espejo E (2003) Prefrontocortical dopamine loss in rats delays long-term extinction of contextual conditioned fear, and reduces social interaction without affecting short-term social interaction memory. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 28:490–498

    Article  Google Scholar 

  • Francati V, Vermetten E, Bremner JD (2007) Functional neuroimaging studies in posttraumatic stress disorder: review of current methods and findings. Depression Anxiety 24:202–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman MJ (2013) Finalizing PTSD in DSM-5: getting here from there and where to go next. J Trauma Stress 26:548–556

    Article  PubMed  Google Scholar 

  • Friedman MJMC, Baker DG, Sikes CR, Farfel GM (2007) Randomized, double-blind comparison of sertraline and placebo for posttraumatic stress disorder in a department of veterans affairs setting. J Clin Psychiatry 68:711–720

    Article  CAS  PubMed  Google Scholar 

  • Furmaga H, Shah A, Frazer A (2011) Serotonergic and noradrenergic pathways are required for the anxiolytic-like and antidepressant-like behavioral effects of repeated vagal nerve stimulation in rats. Biol Psychiatry 70:937–945

    Article  CAS  PubMed  Google Scholar 

  • Garfinkel SN, Abelson JL, King AP, Sripada RK, Wang X, Gaines LM, Liberzon I (2014) Impaired contextual modulation of memories in PTSD: an fMRI and psychophysiological study of extinction retention and fear renewal. J Neurosci: Off J Soc Neurosci 34:13435–13443

    Article  CAS  Google Scholar 

  • George SA, Rodriguez-Santiago M, Riley J, Rodriguez E, Liberzon I (2015) The effect of chronic phenytoin administration on single prolonged stress induced extinction retention deficits and glucocorticoid upregulation in the rat medial prefrontal cortex. Psychopharmacology 232:47–56

    Article  CAS  PubMed  Google Scholar 

  • Gillin JC, Smith-Vaniz A, Schnierow B, Rapaport MH, Kelsoe J, Raimo E, Marler MR, Goyette LM, Stein MB, Zisook S (2001) An open-label, 12-week clinical and sleep EEG study of nefazodone in chronic combat-related posttraumatic stress disorder. J Clin Psychiatry 62:789–796

    Article  CAS  PubMed  Google Scholar 

  • Harvey BH, Naciti C, Brand L, Stein DJ (2004) Serotonin and stress: protective or malevolent actions in the biobehavioral response to repeated trauma? Ann N Y Acad Sci 1032:267–272

    Article  CAS  PubMed  Google Scholar 

  • Harvey BH, Brand L, Jeeva Z, Stein DJ (2006) Cortical/hippocampal monoamines, HPA-axis changes and aversive behavior following stress and restress in an animal model of post-traumatic stress disorder. Physiol Behav 87:881–890

    Article  CAS  PubMed  Google Scholar 

  • Henry JP (1992) Biological basis of the stress response. Integr Physiol Behav Sci: Off J Pavlov Soc 27:66–83

    Article  CAS  Google Scholar 

  • Hu L, Yang J, Song T, Hou N, Liu Y, Zhao X, Zhang D, Wang L, Wang T, Huang C (2014) A new stress model, a scream sound, alters learning and monoamine levels in rat brain. Physiol Behav 123:105–113

    Article  CAS  PubMed  Google Scholar 

  • Imanaka A, Morinobu S, Toki S, Yamawaki S (2006) Importance of early environment in the development of post-traumatic stress disorder-like behaviors. Behav Brain Res 173:129–137

    Article  PubMed  Google Scholar 

  • Jayatissa MN, Bisgaard C, Tingstrom A, Papp M, Wiborg O (2006) Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 31:2395–2404

    Article  CAS  Google Scholar 

  • Johnson LR, Hou M, Prager EM, Ledoux JE (2011) Regulation of the fear network by mediators of stress: norepinephrine alters the balance between cortical and subcortical afferent excitation of the lateral amygdala. Front Behav Neurosci 5:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalinić DBL, Jerončić A, Mimica N, Dodig G, Delaš I (2014) Eicosapentaenoic acid in serum lipids could be inversely correlated with severity of clinical symptomatology in Croatian war veterans with posttraumatic stress disorder. Croat Med J 55:27–37

    PubMed  Google Scholar 

  • Kawahara Y, Kawahara H, Kaneko F, Tanaka M (2007) Long-term administration of citalopram reduces basal and stress-induced extracellular noradrenaline levels in rat brain. Psychopharmacology 194:73–81

    Article  CAS  PubMed  Google Scholar 

  • Knox D, George SA, Fitzpatrick CJ, Rabinak CA, Maren S, Liberzon I (2012) Single prolonged stress disrupts retention of extinguished fear in rats. Learn Mem 19:43–49

    Article  PubMed  PubMed Central  Google Scholar 

  • Krystal JH, Neumeister A (2009) Noradrenergic and serotonergic mechanisms in the neurobiology of posttraumatic stress disorder and resilience. Brain Res 1293:13–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LA Maes M, Verkerk R, Delmeire L, Van Gastel A, Van der Planken M, Scharpé S (1999) Serotonergic and noradrenergic markers of post-traumatic stress disorder with and without major depression. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 20:188–197

    Article  CAS  Google Scholar 

  • Liberzon I, Krstov M, Young EA (1997) Stress-restress: effects on ACTH and fast feedback. Psychoneuroendocrinology 22:443–453

    Article  CAS  PubMed  Google Scholar 

  • Liberzon I, Lopez JF, Flagel SB, Vazquez DM, Young EA (1999) Differential regulation of hippocampal glucocorticoid receptors mRNA and fast feedback: relevance to post-traumatic stress disorder. J Neuroendocrinol 11:11–17

    Article  CAS  PubMed  Google Scholar 

  • Maren S (2011) Seeking a spotless mind: extinction, deconsolidation, and erasure of fear memory. Neuron 70:830–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maren S, Quirk GJ (2004) Neuronal signalling of fear memory. Nat Rev Neurosci 5:844–852

    Article  CAS  PubMed  Google Scholar 

  • Maren S, Phan KL, Liberzon I (2013) The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci 14:417–428

    Article  CAS  PubMed  Google Scholar 

  • Meyer AC, Neugebauer NM, Zheng G, Crooks PA, Dwoskin LP, Bardo MT (2013) Effects of VMAT2 inhibitors lobeline and GZ-793A on methamphetamine-induced changes in dopamine release, metabolism and synthesis in vivo. J Neurochem 127:187–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milad MR, Rauch SL, Pitman RK, Quirk GJ (2006) Fear extinction in rats: implications for human brain imaging and anxiety disorders. Biol Psychol 73:61–71

    Article  PubMed  Google Scholar 

  • Mueller D, Bravo-Rivera C, Quirk GJ (2010) Infralimbic D2 receptors are necessary for fear extinction and extinction-related tone responses. Biol Psychiatry 68:1055–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates (2nd ed.). Academic Press, New York

  • Pitman RK, Rasmusson AM, Koenen KC, Shin LM, Orr SP, Gilbertson MW, Milad MR, Liberzon I (2012) Biological studies of post-traumatic stress disorder. Nat Rev Neurosci 13:769–787

    Article  CAS  PubMed  Google Scholar 

  • Poltronieri SC, Zangrossi H, de Barros VM (2003) Antipanic-like effect of serotonin reuptake inhibitors in the elevated T-maze. Behav Brain Res 147:185–192

    Article  CAS  PubMed  Google Scholar 

  • Ravindran LN, Stein MB (2009) Pharmacotherapy of PTSD: premises, principles, and priorities. Brain Res 1293:24–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravindran LN, Stein MB (2010) Pharmacotherapy of post-traumatic stress disorder. Curr Top Behav Neurosci 2:505--25

  • Rea K, Folgering J, Westerink BH, Cremers TI (2010) Alpha1-adrenoceptors modulate citalopram-induced serotonin release. Neuropharmacology 58:962–971

    Article  CAS  PubMed  Google Scholar 

  • Robert SHM, Ulmer HG, Lorberbaum JP, Durkalski VL (2006) Open-label trial of escitalopram in the treatment of posttraumatic stress disorder. J Clin Psychiatry 67:1522–1526

    Article  CAS  PubMed  Google Scholar 

  • Sanders NM, Wilkinson CW, Taborsky GJ Jr, Al-Noori S, Daumen W, Zavosh A, Figlewicz DP (2008) The selective serotonin reuptake inhibitor sertraline enhances counterregulatory responses to hypoglycemia. Am J Physiol Endocrinol Metab 294:E853–E860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos RO, de Assunção GL, de Medeiros DM, de Sousa Pinto IA, de Barros KS, Soares BL, André E, Gavioli EC, de Paula S-RV (2014) Evaluation of the effect of acute sibutramine in female rats in the elevated T-maze and elevated plus-maze tests. Basic Clin Pharmacol Toxicol 114:181–187

    Article  CAS  PubMed  Google Scholar 

  • Sharp T, Cowen PJ (2011) 5-HT and depression: is the glass half-full? Curr Opin Pharmacol 11:45–51

    Article  CAS  PubMed  Google Scholar 

  • Sierra-Mercado D, Padilla-Coreano N, Quirk GJ (2011) Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 36:529–538

    Article  Google Scholar 

  • Stein DJ, Ipser JC, Seedat S (2006) Pharmacotherapy for post traumatic stress disorder (PTSD). Cochrane Database Syst Rev 25, CD002795

    Google Scholar 

  • Stein DJ, Pedersen R, Rothbaum BO, Baldwin DS, Ahmed S, Musgnung J, Davidson J (2009) Onset of activity and time to response on individual CAPS-SX17 items in patients treated for post-traumatic stress disorder with venlafaxine ER: a pooled analysis. Int J Neuropsychopharmacol / Off Sci J Coll Int Neuropsychopharmacol (CINP) 12:23–31

    CAS  Google Scholar 

  • Teixeira RCZH, Graeff FG (2000) Behavioral effects of acute and chronic imipramine in the elevated T-maze model of anxiety. Pharmacol Biochem Behav 65(571-6):571–576

    Article  CAS  PubMed  Google Scholar 

  • Thompson BM, Baratta MV, Biedenkapp JC, Rudy JW, Watkins LR, Maier SF (2010) Activation of the infralimbic cortex in a fear context enhances extinction learning. Learn Mem 17:591–599

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Der Kolk BA (2001) The psychobiology and psychopharmacology of PTSD. Human Psychopharmacol 16:S49–S64

    Article  Google Scholar 

  • VanElzakker MB, Kathryn Dahlgren M, Caroline Davis F, Dubois S, Shin LM (2014) From Pavlov to PTSD: the extinction of conditioned fear in rodents, humans, and anxiety disorders. Neurobiol Learn Mem 113C:3–18

    Article  Google Scholar 

  • Vythilingam M, Gill JM, Luckenbaugh DA, Gold PW, Collin C, Bonne O, Plumb K, Polignano E, West K, Charney D (2010) Low early morning plasma cortisol in posttraumatic stress disorder is associated with co-morbid depression but not with enhanced glucocorticoid feedback inhibition. Psychoneuroendocrinology 35:442–450

    Article  CAS  PubMed  Google Scholar 

  • Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology 134:319–329

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Morinobu S, Takei S, Fuchikami M, Matsuki A, Yamawaki S, Liberzon I (2009) Single prolonged stress: toward an animal model of posttraumatic stress disorder. Depression Anxiety 26:1110–1117

    Article  PubMed  Google Scholar 

  • Yang C, Wang G, Wang H, Liu Z, Wang X (2009) Cytoskeletal alterations in rat hippocampus following chronic unpredictable mild stress and re-exposure to acute and chronic unpredictable mild stress. Behav Brain Res 205:518–524

    Article  PubMed  Google Scholar 

  • Yehuda R (2002) Post-traumatic stress disorder. N Engl J Med 346:108–114

    Article  CAS  PubMed  Google Scholar 

  • Yoshitake T, Kehr J, Yoshitake S, Fujino K, Nohta H, Yamaguchi M (2004) Determination of serotonin, noradrenaline, dopamine and their metabolites in rat brain extracts and microdialysis samples by column liquid chromatography with fluorescence detection following derivatization with benzylamine and 1,2-diphenylethylenediamine. J Chromatogr B Anal Technol Biomed Life Sci 807:177–183

    Article  CAS  Google Scholar 

  • Zangrossi H Jr, Graeff FG (2014) Serotonin in anxiety and panic: contributions of the elevated T-maze. Neurosci Biobehav Rev 46(Pt 3):397–406

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Ministry of Science and Technology (MOST 102-2410-H-016-002 and 103-2410-H-016-004) and National Defense Medical Center (D101-15-3 and 103-M085) of Taiwan. Special thanks must go to Lundbeck company, Denmark for kindly providing the ESC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yia-Ping Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CC., Tung, CS. & Liu, YP. Escitalopram reversed the traumatic stress-induced depressed and anxiety-like symptoms but not the deficits of fear memory. Psychopharmacology 233, 1135–1146 (2016). https://doi.org/10.1007/s00213-015-4194-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4194-5

Keywords

Navigation