Skip to main content
Log in

Regulation of sustained attention, false alarm responding and implementation of conditional rules by prefrontal GABAA transmission: comparison with NMDA transmission

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Both prefrontal cortex (PFC) GABAA and NMDA transmission regulate attentional processes, yet how they may differentially regulate signal detection or other aspects of attention is unclear.

Objectives

We examined PFC GABAA and NMDA receptor regulation of attention using a sustained attention task (SAT) permitting identification of distinct forms of impairments. As this task requires implementation of conditional rules, we also investigated how reducing PFC GABA transmission affected performance of visual and auditory conditional discriminations.

Methods

Male rats were well-trained on the SAT that required identifying whether a brief visual stimulus (500–50 ms) was present/absent by pressing one of two levers. They then received intra-PFC infusions of the GABAA antagonist bicuculline (12.5–50 ng), the NMDA antagonist MK-801 (6 μg), and i.p. injections of MK-801 (0.1–0.3 mg/kg) prior to testing. Separate groups were trained either on a similar task where the visual stimulus was presented for 2.5 s, or a task where presentation of one of two auditory cues required responding on a left or right lever.

Results

Both doses of bicuculline impaired vigilance, selectively increasing errors during nonsignal trials. Intra-PFC MK-801 induced subtle impairments at short signal durations. Systemic MK-801 impaired performance and increased response latencies. Visual and auditory conditional discrimination was impaired by 50 ng, but not 12.5 ng of bicuculline.

Conclusions

These findings highlight a key role for PFC GABA transmission in reducing sensitivity to distractors during attentional performance. Furthermore, they reveal that disruption of GABA signaling can interfere with the ability to implement conditional rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE, Jones EG (1995) Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 52:258–266

    Article  CAS  PubMed  Google Scholar 

  • Alexander MP, Stuss DT, Shallice T, Picton TW, Gillingham S (2005) Impaired concentration due to frontal lobe damage from two distinct lesion sites. Neurology 65:572–579

    Article  CAS  PubMed  Google Scholar 

  • Auger ML, Floresco SB (2015) Prefrontal cortical GABA modulation of spatial reference and working memory. Int J Neuropsychopharmacol 18. 10.1093/ijnp/pyu013

  • Auger ML, Floresco SB (2017) Prefrontal cortical GABAergic and NMDA glutamatergic regulation of delayed responding. Neuropharmacology 113:10–20

    Article  CAS  PubMed  Google Scholar 

  • Bari A, Dalley JW, Robbins TW (2008) The application of the 5-choice serial reaction time task for the assessment of visual attentional processes and impulse control in rats. Nat Protoc 3:759–767

    Article  CAS  PubMed  Google Scholar 

  • Barnett JH, Sahakian BJ, Werners U, Hill KE, Brazil R, Gallagher O, Bullmore ET, Jones PB (2005) Visuospatial learning and executive function are independently impaired in first-episode psychosis. Psychol Med 35:1031–1041

  • Berman KF, Weinberger DR (1990) Lateralisation of cortical function during cognitive tasks: regional cerebral blood flow studies of normal individuals and patients with schizophrenia. J Neurol Neurosurg Psychiatry 53:150–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WJ, Faraone SV (2000) Sustained attention deficits as markers of genetic susceptibility to schizophrenia. Am J Med Genet 97:52–57

    Article  CAS  PubMed  Google Scholar 

  • Chudasama Y, Passetti F, Rhodes SE, Lopian D, Desai A, Robbins TW (2003) Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behav Brain Res 146:105–119

    Article  CAS  PubMed  Google Scholar 

  • Cohen RM, Semple WE, Gross M, King AC, Nordahl TE (1992) Metabolic brain pattern of sustained auditory discrimination. Exp Brain Res 92:165–172

    Article  CAS  PubMed  Google Scholar 

  • Cornblatt BA, Malhotra AK (2001) Impaired attention as an endophenotype for molecular genetic studies of schizophrenia. Am J Med Genet 105:11–15

    Article  CAS  PubMed  Google Scholar 

  • Coull JT, Frackowiak RS, Frith CD (1998) Monitoring for target objects: activation of right frontal and parietal cortices with increasing time on task. Neuropsychologia 36:1325–1334

    Article  CAS  PubMed  Google Scholar 

  • Curley AA, Arion D, Volk DW, Asafu-Adjei JK, Sampson AR, Fish KN, Lewis DA (2011) Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type-specific features. Am J Psychiatry 168:921–929

    Article  PubMed  PubMed Central  Google Scholar 

  • Demeter E, Guthrie SK, Taylor SF, Sarter M, Lustig C (2013) Increased distractor vulnerability but preserved vigilance in patients with schizophrenia: evidence from a translational sustained attention task. Schizophr Res 144:136–141

    Article  PubMed  Google Scholar 

  • Dickinson D, Ramsey ME, Gold JM (2007) Overlooking the obvious: a meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Arch Gen Psychiatry 64:532–542

    Article  PubMed  Google Scholar 

  • Enomoto T, Tse MT, Floresco SB (2011) Reducing prefrontal gamma-aminobutyric acid activity induces cognitive, behavioral, and dopaminergic abnormalities that resemble schizophrenia. Biol Psychiatry 69:432–441

    Article  CAS  PubMed  Google Scholar 

  • Fervaha G, Duncan M, Foussias G, Agid O, Faulkner GE, Remington G (2015) Effort-based decision making as an objective paradigm for the assessment of motivational deficits in schizophrenia. Schizophr Res 168:483–490

    Article  PubMed  Google Scholar 

  • Finkelstein JR, Cannon TD, Gur RE, Gur RC, Moberg P (1997) Attentional dysfunctions in neuroleptic-naive and neuroleptic-withdrawn schizophrenic patients and their siblings. J Abnorm Psychol 106:203–212

    Article  CAS  PubMed  Google Scholar 

  • Floresco SB, Jentsch JD (2011) Pharmacological enhancement of memory and executive functioning in laboratory animals. Neuropsychopharmacology 36:227–250

    Article  CAS  PubMed  Google Scholar 

  • Frankle WG, Cho RY, Prasad KM, Mason NS, Paris J, Himes ML, Walker C, Lewis DA, Narendran R (2015) In vivo measurement of GABA transmission in healthy subjects and schizophrenia patients. Am J Psychiatry 172:1148–1159

    Article  PubMed  PubMed Central  Google Scholar 

  • Gazzaley A, Nobre AC (2012) Top-down modulation: bridging selective attention and working memory. Trends Cogn Sci 16:129–135

    Article  PubMed  Google Scholar 

  • Gill TM, Sarter M, Givens B (2000) Sustained visual attention performance-associated prefrontal neuronal activity: evidence for cholinergic modulation. J Neurosci 20:4745–4757

    CAS  PubMed  Google Scholar 

  • Gonzalez-Burgos G, Lewis DA (2012) NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophr Bull 38:950–957

    Article  PubMed  PubMed Central  Google Scholar 

  • Hegerl U, Himmerich H, Engmann B, Hensch T (2010) Mania and attention-deficit/hyperactivity disorder: common symptomatology, common pathophysiology and common treatment? Curr Opin Psychiatry 23:1–7

    Article  PubMed  Google Scholar 

  • Hemsley DR (2005) The schizophrenic experience: taken out of context? Schizophr Bull 31:43–53

    Article  PubMed  Google Scholar 

  • Homayoun H, Moghaddam B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27:11496–11500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang-Pollock CL, Karalunas SL, Tam H, Moore AN (2012) Evaluating vigilance deficits in ADHD: a meta-analysis of CPT performance. J Abnorm Psychol 121:360–371

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee J, Park S (2005) Working memory impairments in schizophrenia: a meta-analysis. J Abnorm Psychol 114:599–611

    Article  PubMed  Google Scholar 

  • Lewin JS, Friedman L, Wu D, Miller DA, Thompson LA, Klein SK, Wise AL, Hedera P, Buckley P, Meltzer H, Friedland RP, Duerk JL (1996) Cortical localization of human sustained attention: detection with functional MR using a visual vigilance paradigm. J Comput Assist Tomogr 20:695–701

    Article  CAS  PubMed  Google Scholar 

  • Liu SK, Chiu CH, Chang CJ, Hwang TJ, Hwu HG, Chen WJ (2002) Deficits in sustained attention in schizophrenia and affective disorders: stable versus state-dependent markers. Am J Psychiatry 159:975–982

    Article  PubMed  Google Scholar 

  • Lodge DJ (2011) The medial prefrontal and orbitofrontal cortices differentially regulate dopamine system function. Neuropsychopharmacology 36:1227–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lustig C, Kozak R, Sarter M, Young JW, Robbins TW (2013) CNTRICS final animal model task selection: control of attention. Neurosci Biobehav Rev 37:2099–2110

    Article  CAS  PubMed  Google Scholar 

  • Maddux JM, Holland PC (2011) Effects of dorsal or ventral medial prefrontal cortical lesions on five-choice serial reaction time performance in rats. Behav Brain Res 221:63–74

    Article  PubMed  PubMed Central  Google Scholar 

  • Marotta A, Chiaie RD, Spagna A, Bernabei L, Sciarretta M, Roca J, Biondi M, Casagrande M (2015) Impaired conflict resolution and vigilance in euthymic bipolar disorder. Psychiatry Res 229:490–496

    Article  PubMed  Google Scholar 

  • McCleery A, Green MF, Hellemann GS, Baade LE, Gold JM, Keefe RS, Kern RS, Mesholam-Gately RI, Seidman LJ, Subotnik KL, Ventura J, Nuechterlein KH (2015) Latent structure of cognition in schizophrenia: a confirmatory factor analysis of the MATRICS Consensus Cognitive Battery (MCCB). Psychol Med 45:2657–2666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGaughy J, Sarter M (1995) Behavioral vigilance in rats: task validation and effects of age, amphetamine, and benzodiazepine receptor ligands. Psychopharmacology 117:340–357

    Article  CAS  PubMed  Google Scholar 

  • McGaughy J, Sarter M (1998) Sustained attention performance in rats with intracortical infusions of 192 IgG-saporin-induced cortical cholinergic deafferentation: effects of physostigmine and FG 7142. Behav Neurosci 112:1519–1525

    Article  CAS  PubMed  Google Scholar 

  • McGaughy J, Kaiser T, Sarter M (1996) Behavioral vigilance following infusions of 192 IgG-saporin into the basal forebrain: selectivity of the behavioral impairment and relation to cortical AChE-positive fiber density. Behav Neurosci 110:247–265

    Article  CAS  PubMed  Google Scholar 

  • Miner LA, Ostrander M, Sarter M (1997) Effects of ibotenic acid-induced loss of neurons in the medial prefrontal cortex of rats on behavioral vigilance: evidence for executive dysfunction. J Psychopharmacol 11:169–178

    Article  CAS  PubMed  Google Scholar 

  • Murphy ER, Dalley JW, Robbins TW (2005) Local glutamate receptor antagonism in the rat prefrontal cortex disrupts response inhibition in a visuospatial attentional task. Psychopharmacology 179:99–107

    Article  CAS  PubMed  Google Scholar 

  • Nelson CL, Burk JA, Bruno JP, Sarter M (2002) Effects of acute and repeated systemic administration of ketamine on prefrontal acetylcholine release and sustained attention performance in rats. Psychopharmacology 161:168–179

    Article  CAS  PubMed  Google Scholar 

  • Nuechterlein KH, Dawson ME, Gitlin M, Ventura J, Goldstein MJ, Snyder KS, Yee CM, Mintz J (1992) Developmental processes in schizophrenic disorders: longitudinal studies of vulnerability and stress. Schizophr Bull 18:387–425

    Article  CAS  PubMed  Google Scholar 

  • Nuechterlein KH, Barch DM, Gold JM, Goldberg TE, Green MF, Heaton RK (2004) Identification of separable cognitive factors in schizophrenia. Schizophr Res 72:29–39

    Article  PubMed  Google Scholar 

  • Nuechterlein KH, Green MF, Calkins ME, Greenwood TA, Gur RE, Gur RC, Lazzeroni LC, Light GA, Radant AD, Seidman LJ, Siever LJ, Silverman JM, Sprock J, Stone WS, Sugar CA, Swerdlow NR, Tsuang DW, Tsuang MT, Turetsky BI, Braff DL (2015) Attention/vigilance in schizophrenia: performance results from a large multi-site study of the Consortium on the Genetics of Schizophrenia (COGS). Schizophr Res 163:38–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Paine TA, Tomasiewicz HC, Zhang K, Carlezon WA (2007) Sensitivity of the five-choice serial reaction time task to the effects of various psychotropic drugs in Sprague-Dawley rats. Biol Psychiatry 62:687–693

    Article  CAS  PubMed  Google Scholar 

  • Paine TA, Slipp LE, Carlezon WA (2011) Schizophrenia-like attentional deficits following blockade of prefrontal cortex GABAA receptors. Neuropsychopharmacology 36:1703–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paine TA, O’Hara A, Plaut B, Lowes DC (2015) Effects of disrupting medial prefrontal cortex GABA transmission on decision-making in a rodent gambling task. Psychopharmacology 232:1755–1765

    Article  CAS  PubMed  Google Scholar 

  • Paine TA, Swedlow N, Swetschinski L (2017) Decreasing GABA function within the medial prefrontal cortex or basolateral amygdala decreases sociability. Behav Brain Res 317:542–552

    Article  CAS  PubMed  Google Scholar 

  • Pantelis C, Barber FZ, Barnes TR, Nelson HE, Owen AM, Robbins TW (1999) Comparison of set-shifting ability in patients with chronic schizophrenia and frontal lobe damage. Schizophr Res 37:251–270

    Article  CAS  PubMed  Google Scholar 

  • Parasuraman R, Warm JS, See JE (1998) Brain systems of vigilance. In: Suraman R (ed) The attentive brain. MIT Press, Cambridge

    Google Scholar 

  • Pardo JV, Fox PT, Raichle ME (1991) Localization of a human system for sustained attention by positron emission tomography. Nature 349:61–64

    Article  CAS  PubMed  Google Scholar 

  • Pehrson AL, Bondi CO, Totah NK, Moghaddam B (2013) The influence of NMDA and GABA(A) receptors and glutamic acid decarboxylase (GAD) activity on attention. Psychopharmacology 225:31–39

    Article  CAS  PubMed  Google Scholar 

  • Petersen SE, Posner MI (2012) The attention system of the human brain: 20 years after. Annu Rev Neurosci 35:73–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pezze M, McGarrity S, Mason R, Fone KC, Bast T (2014) Too little and too much: hypoactivation and disinhibition of medial prefrontal cortex cause attentional deficits. J Neurosci 34:7931–7946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piantadosi PT, Floresco SB (2014) Prefrontal cortical GABA transmission modulates discrimination and latent inhibition of conditioned fear: relevance for schizophrenia. Neuropsychopharmacology 39:2473–2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piantadosi PT, Khayambashi S, Schluter MG, Kutarna A, Floresco SB (2016) Perturbations in reward-related decision-making induced by reduced prefrontal cortical GABA transmission: relevance for psychiatric disorders. Neuropharmacology 101:279–290

    Article  CAS  PubMed  Google Scholar 

  • Quarta D, Naylor CG, Morris HV, Patel S, Genn RF, Stolerman IP (2007) Different effects of ionotropic and metabotropic glutamate receptor antagonists on attention and the attentional properties of nicotine. Neuropharmacology 53:421–430

    Article  CAS  PubMed  Google Scholar 

  • Rueckert L, Grafman J (1996) Sustained attention deficits in patients with right frontal lesions. Neuropsychologia 34:953–963

    Article  CAS  PubMed  Google Scholar 

  • Servan-Schreiber D, Cohen JD, Steingard S (1996) Schizophrenic deficits in the processing of context. A test of a theoretical model. Arch Gen Psychiatry 53:1105–1112

    Article  CAS  PubMed  Google Scholar 

  • Spieker EA, Astur RS, West JT, Griego JA, Rowland LM (2012) Spatial memory deficits in a virtual reality eight-arm radial maze in schizophrenia. Schizophr Res 135:84–89

    Article  PubMed  Google Scholar 

  • Tse MT, Piantadosi PT, Floresco SB (2015) Prefrontal cortical gamma-aminobutyric acid transmission and cognitive function: drawing links to schizophrenia from preclinical research. Biol Psychiatry 77:929–939

    Article  CAS  PubMed  Google Scholar 

  • Turchi J, Sarter M (1997) Cortical acetylcholine and processing capacity: effects of cortical cholinergic deafferentation on crossmodal divided attention in rats. Brain Res Cogn Brain Res 6:147–158

    Article  CAS  PubMed  Google Scholar 

  • Turchi J, Holley LA, Sarter M (1995) Effects of nicotinic acetylcholine receptor ligands on behavioral vigilance in rats. Psychopharmacology 118:195–205

    Article  CAS  PubMed  Google Scholar 

  • Turchi J, Holley LA, Sarter M (1996) Effects of benzodiazepine receptor inverse agonists and nicotine on behavioral vigilance in senescent rats. J Gerontol A Biol Sci Med Sci 51:B225–B231

    Article  CAS  PubMed  Google Scholar 

  • Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11:100–113

    Article  CAS  PubMed  Google Scholar 

  • Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA (2000) Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry 57:237–245

    Article  CAS  PubMed  Google Scholar 

  • Wood SJ, Proffitt T, Mahony K, Smith DJ, Buchanan JA, Brewer W, Stuart GW, Velakoulis D, McGorry PD, Pantelis C (2002) Visuospatial memory and learning in first-episode schizophreniform psychosis and established schizophrenia: a functional correlate of hippocampal pathology? Psychol Med 32:429–438

Download references

Acknowledgements

This work was supported by a grant from the Canadian Institutes of Health Research (MOP 130393) to SBF. We are grateful to Dr. Rouba Kozak for providing us with the MED-PC codes used for the attention task used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stan B. Floresco.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auger, M.L., Meccia, J. & Floresco, S.B. Regulation of sustained attention, false alarm responding and implementation of conditional rules by prefrontal GABAA transmission: comparison with NMDA transmission. Psychopharmacology 234, 2777–2792 (2017). https://doi.org/10.1007/s00213-017-4670-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-017-4670-1

Keywords

Navigation