Skip to main content

Advertisement

Log in

Interpretation of mass spectrometry data for high-throughput proteomics

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Recent developments in proteomics have revealed a bottleneck in bioinformatics: high-quality interpretation of acquired MS data. The ability to generate thousands of MS spectra per day, and the demand for this, makes manual methods inadequate for analysis and underlines the need to transfer the advanced capabilities of an expert human user into sophisticated MS interpretation algorithms. The identification rate in current high-throughput proteomics studies is not only a matter of instrumentation. We present software for high-throughput PMF identification, which enables robust and confident protein identification at higher rates. This has been achieved by automated calibration, peak rejection, and use of a meta search approach which employs various PMF search engines. The automatic calibration consists of a dynamic, spectral information-dependent algorithm, which combines various known calibration methods and iteratively establishes an optimised calibration. The peak rejection algorithm filters signals that are unrelated to the analysed protein by use of automatically generated and dataset-dependent exclusion lists. In the "meta search" several known PMF search engines are triggered and their results are merged by use of a meta score. The significance of the meta score was assessed by simulation of PMF identification with 10,000 artificial spectra resembling a data situation close to the measured dataset. By means of this simulation the meta score is linked to expectation values as a statistical measure. The presented software is part of the proteome database ProteinScape which links the information derived from MS data to other relevant proteomics data. We demonstrate the performance of the presented system with MS data from 1891 PMF spectra. As a result of automatic calibration and peak rejection the identification rate increased from 6% to 44%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

2-DE:

Two-dimensional gel electrophoresis

MALDI:

Matrix-assisted laser desorption ionisation

PMF:

Peptide mass fingerprinting

MS:

Mass spectrometry

TOF:

Time of flight

References

  1. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Mol Cell Biol 19:1720–1730

    PubMed  Google Scholar 

  2. Anderson L, Seilhamer J (1997) Electrophoresis 18:533–537

    CAS  PubMed  Google Scholar 

  3. Hatzimanikatis V, Lee KH (1999) Metab Eng 1:275–281

    Article  CAS  PubMed  Google Scholar 

  4. Klose J (1975) Humangenetik 26:231–243

    PubMed  Google Scholar 

  5. O'Farrell PH (1975) J Biol Chem 250:4007–4021

    PubMed  Google Scholar 

  6. Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C (1993) Proc Natl Acad Sci USA 90:5011–5015

    CAS  PubMed  Google Scholar 

  7. James P, Quadroni M, Carafoli E, Gonnet G (1993) Biochem Biophys Res Commun 195:58–64

    Article  CAS  PubMed  Google Scholar 

  8. Mann M, Hojrup P, Roepstorff P (1993) Biol Mass Spectrom 22:338–345

    CAS  PubMed  Google Scholar 

  9. Yates JR, Speicher S, Griffin PR, Hunkapiller T (1993) Anal Biochem 214:397–408

    Article  CAS  PubMed  Google Scholar 

  10. Pappin DJ, Hojrup P, Bleasby A (1993) Curr Biol 3:327–332

    CAS  Google Scholar 

  11. Hamm CW, Wilson WE, Harvan DJ (1986) Comput Appl Biosci 2:115–118

    CAS  PubMed  Google Scholar 

  12. Hunt DF, Yates JR, Shabanowitz J, Winston S, Hauer CR (1986) Proc Natl Acad Sci USA 83:6233–6237

    PubMed  Google Scholar 

  13. Taylor JA, Johnson RS (1997) Rapid Commun Mass Spectrom 11:1067–1075

    Article  CAS  PubMed  Google Scholar 

  14. Mann M, Wilm M (1994) Anal Chem 66:4390–4399

    CAS  PubMed  Google Scholar 

  15. Eng JK, McCormack AL, Yates JR III (1994) J Am Soc Mass Spectrom 5:976–989

    Article  CAS  Google Scholar 

  16. Quadroni M, James P (1999) Electrophoresis 20:664–677

    Article  CAS  PubMed  Google Scholar 

  17. Traini M, Gooley AA, Ou K, Wilkins MR, Tonella L, Sanchez JC, Hochstrasser DF, Williams KL (1998) Electrophoresis 19:1941–1949

    CAS  PubMed  Google Scholar 

  18. Nordhoff E, Egelhofer V, Giavalisco P, Eickhoff H, Horn M, Przewieslik T, Theiss D, Schneider U, Lehrach H, Gobom J (2001) Electrophoresis 22:2844–2855

    Article  CAS  PubMed  Google Scholar 

  19. Walsh BJ, Molloy MP, Williams KL (1998) Electrophoresis 19:1883–1890

    CAS  PubMed  Google Scholar 

  20. Houthaeve T, Gausepohl H, Ashman K, Nillson T, Mann M (1997) J Protein Chem 16:343–348

    CAS  PubMed  Google Scholar 

  21. Jensen ON, Mortensen P, Vorm O, Mann M (1997) Anal Chem 69:1706–1714

    Article  CAS  PubMed  Google Scholar 

  22. Field HI, Fenyo D, Beavis RC (2002) Proteomics 2:36–47

    Article  CAS  PubMed  Google Scholar 

  23. Klose J, Kobalz U (1995) Electrophoresis 16:1034–1059

    CAS  PubMed  Google Scholar 

  24. Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Electrophoresis 9:255–262

    CAS  PubMed  Google Scholar 

  25. Gobom J, Schuerenberg M, Mueller M, Theiss D, Lehrach H, Nordhoff E (2001) Anal Chem 73:434–438

    Article  CAS  PubMed  Google Scholar 

  26. Zhang W, Chait BT (2000) Anal Chem 72:2482–2489

    Article  CAS  PubMed  Google Scholar 

  27. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Electrophoresis 20:3551–3567

    Article  CAS  PubMed  Google Scholar 

  28. Clauser KR, Baker P, Burlingame AL (1999) Anal Chem 71:2871–2882

    CAS  PubMed  Google Scholar 

  29. Gras R, Muller M, Gasteiger E, Gay S, Binz PA, Bienvenut W, Hoogland C, Sanchez JC, Bairoch A, Hochstrasser DF, Appel RD (1999) Electrophoresis 20:3535–3550

    Article  CAS  PubMed  Google Scholar 

  30. Mortz E, Vorm O, Mann M, Roepstorff P (1994) Biol Mass Spectrom 23:249–261

    CAS  PubMed  Google Scholar 

  31. Lee K, Bae D, Lim D (2002) Mol Cells 13:175–184

    Article  CAS  PubMed  Google Scholar 

  32. Gay S, Binz PA, Hochstrasser DF, Appel RD (1999) Electrophoresis 20:3527–3534

    Article  CAS  PubMed  Google Scholar 

  33. Wool A, Smilansky Z (2002) Proteomics 2:1365–1373

    Article  CAS  PubMed  Google Scholar 

  34. Gobom J, Mueller M, Egelhofer V, Theiss D, Lehrach H, Nordhoff E (2002) Anal Chem 74:3915–3923

    Article  CAS  PubMed  Google Scholar 

  35. Golub GH, Van Loan CF (1989) Matrix computations, 2nd edn. Johns Hopkins University Press, Baltimore

  36. Fenyo D, Beavis RC (2003) Anal Chem 75:768–774

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work is supported by the German Office for Education and Research (Bundesministerium für Bildung und Forschung—BMBF) as part of the "Human Brain Proteome Project" (co-author).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Blueggel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamrad, D.C., Koerting, G., Gobom, J. et al. Interpretation of mass spectrometry data for high-throughput proteomics. Anal Bioanal Chem 376, 1014–1022 (2003). https://doi.org/10.1007/s00216-003-1995-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-1995-x

Keywords

Navigation