Skip to main content
Log in

One-milliliter wet-digestion for inductively coupled plasma mass spectrometry (ICP-MS): determination of platinum-DNA adducts in cells treated with platinum(II) complexes

  • Short Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Platinum (Pt)–DNA adducts formed by the anti-tumor agent cisplatin are recognized by the DNA mismatch repair (MMR) system. To investigate the involvement of MMR proteins including hMLH1 in the removal of these adducts, we developed a mL-scale wet-digestion method for inductively coupled plasma mass spectrometry (ICP-MS). The detection limit was 0.01 ng mL−1 Pt, which corresponded to 2 pg Pt/μg DNA when 10 μg of DNA was used. The mean relative errors were 5.4% or better for a dynamic range of 0.01–10 ng mL−1 Pt. DNA (~500 μg) had no matrix effect. To improve the accuracy, DNA preparations were treated with ribonuclease and the apparent reduction in the concentration of Pt was corrected using cellular DNA levels, which were determined with Hoechst 33258. No significant differences were observed, in terms of the formation of Pt–DNA adducts or their removal over 6 h, between hMLH1-deficient HCT116 cells, a human colorectal cancer cell line, and hMLH1-complemented HCT116+ch3 cells (n=5; P>0.05), indicating that the hMLH1-dependent DNA repair systems contribute to neither the formation nor the removal of the adducts at detectable levels. In addition, approximately 19% of the adducts were removed within 6 h in both cell lines. A time course analysis (~24 h) suggested that the removal of cisplatin-generated Pt–DNA adducts follows first-order kinetics (t1/2=32 h). The amount of Pt–DNA adduct formed by oxaliplatin in 1 h was 56% (ratio of means) of that generated by an equimolar concentration of cisplatin in HCT116. The proposed procedure could be useful for determining Pt–DNA adducts formed by Pt(II) complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a−b

Similar content being viewed by others

References

  1. Jakupec MA, Galanski M, Keppler BK (2003) Rev Physiol Biochem Pharmacol 146:1–53

    CAS  PubMed  Google Scholar 

  2. Kartalou M, Essigmann JM (2001) Mutat Res 478:23–43

    CAS  PubMed  Google Scholar 

  3. Woynarowski JM, Faivre S, Herzig MCS, Arnett B, Chapman WG, Trevino AV, Raymond E, Chaney SG, Vaisman A, Varchenko M, Juniewicz PE (2000) Mol Pharmacol 58:920–927

    Google Scholar 

  4. May A, Nairn RS, Okumoto DS, Wassermann K, Stevnsner T, Jones JC, Bohr VA (1993) J Biol Chem 268:1650–1657

    CAS  PubMed  Google Scholar 

  5. Moggs JG, Szymkowski DE, Yamada M, Karran P, Wood RD (1997) Nucleic Acids Res 25:480–490

    Article  CAS  PubMed  Google Scholar 

  6. de Laat WL, Jaspers NGJ, Hoeijmakers JHJ (1999) Genes Dev 13:768–785

    PubMed  Google Scholar 

  7. Mellon I, Rajpal DK, Koi M, Boland CR, Champe GN (1996) Science 272:557–560

    CAS  PubMed  Google Scholar 

  8. Duckett DR, Drummond JT, Murchie AIH, Reardon JT, Sancar A, Lilley DMJ, Modrich P (1996) Proc Natl Acad Sci USA 93:6443–6447

    Article  CAS  PubMed  Google Scholar 

  9. Fink D, Nebel S, Aebi S, Zheng H, Cenni B, Nehmé A, Christen RD, Howell SB (1996) Cancer Res 56:4881–4886

    CAS  PubMed  Google Scholar 

  10. Cenni B, Kim HK, Bubley GJ, Aebi S, Fink D, Teicher BA, Howell SB, Christen RD (1999) Br J Cancer 80:699–704

    Article  CAS  PubMed  Google Scholar 

  11. Lin X, Ramamurthi K, Mishima M, Kondo A, Christen RD, Howell SB (2001) Cancer Res 61:1508–1516

    CAS  PubMed  Google Scholar 

  12. Arnould S, Hennebelle I, Canal P, Bugat R, Guichard S (2003) Eur J Cancer 39:112–119

    Article  CAS  PubMed  Google Scholar 

  13. Ding H, Goldberg MM, Raymer JH, Holmes J, Stanko J, Chaney SG (1999) Biol Trace Element Res 67:1–11

    CAS  Google Scholar 

  14. Morrison JG, White P, McDougall S, Firth JW, Woolfrey SG, Graham MA, Greenslade D (2000) J Pharm Biomed Anal 24:1–10

    Article  CAS  PubMed  Google Scholar 

  15. Zimmermann S, Menzel CM, Berner Z, Eckhardt JD, Stüben D, Alt F, Messerschmidt J, Taraschewski H, Sures B (2001) Anal Chim Acta 439:203–209

    Article  CAS  Google Scholar 

  16. Bonetti A, Apostoli P, Zaninelli M, Pavanel F, Colombatti M, Cetto GL, Franceschi T, Sperotto L, Leone R (1996) Clin Cancer Res 2:1829–1835

    Google Scholar 

  17. Weber G, Messerschmidt J, Pieck AC, Junker AM, Wehmeier A, Jaehde U (2004) Anal Bioanal Chem 380:54–58

    Article  CAS  PubMed  Google Scholar 

  18. Koi M, Umar A, Chauhan DP, Cherian SP, Carethers JM, Kunkel TA, Boland CR (1994) Cancer Res 54:4308–4312 [published erratum appears in Cancer Res 1995 55:201]

    CAS  PubMed  Google Scholar 

  19. Strauss WM (1998) In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 2.2.1–2.2.3

  20. Labarca C, Paigen K (1980) Anal Biochem 102:344–352

    Article  CAS  PubMed  Google Scholar 

  21. Ghezzi A, Aceto M, Cassino C, Gabano E, Osella D (2004) J Inorg Biochem 98:73–78

    Article  CAS  PubMed  Google Scholar 

  22. Holmquist GP, Gao S (1997) Mutat Res 386:69–101

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromichi Hemmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, K., Kato, N., Takagi, A. et al. One-milliliter wet-digestion for inductively coupled plasma mass spectrometry (ICP-MS): determination of platinum-DNA adducts in cells treated with platinum(II) complexes. Anal Bioanal Chem 382, 1702–1707 (2005). https://doi.org/10.1007/s00216-005-3339-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3339-5

Keywords

Navigation