Skip to main content
Log in

Growth substrate induced functional changes elucidated by FTIR and Raman spectroscopy in in–vitro cultured human keratinocytes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Non-invasive measurements of cellular function in in vitro cultured cell lines using vibrational spectroscopy require the use of spectroscopic substrates such as quartz, ZnSe and MirrIR etc. These substrates are generally dissimilar to the original in vivo extracellular environment of a given cell line and are often tolerated poorly by cultured cell lines resulting in morphological and functional changes in the cell. The present study demonstrates various correlations between vibrational spectroscopic analyses and biochemical analyses in the evaluation of the interaction of a normal human epithelial keratinocyte cell line (HaCaT) with MirrIR and quartz substrates coated with fibronectin, laminin and gelatin. The findings of this study suggest that there is a correlation between quantitative measurements of cellular proliferative capacity and viability and peak area ratios in FTIR spectra, with replicated differences in similar areas of the observed Raman spectra. Differences in the physiology of cells were observed between the two spectroscopic substrates coated in fibronectin and laminin, but little differences were observed when the cells were attached to gelatin-coated quartz and MirrIR slides. The correlations demonstrate the sensitivity of the spectroscopic techniques to evaluate the physiology of the system. Furthermore the study suggests that gelatin is a suitable coating for use in spectroscopic measurements of cellular function in human keratinocytes, as it provides a material that normalises the effect of substrate attachment on cellular physiology. This effect is likely to be cell-line dependent, and it is recommended that similar evaluations of this effect are performed for those combinations of spectroscopic substrate and cell lines that are to be used in individual experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gaudenzi S, Pozzi D, Toro P, Silvestri I, Morrone S, Castellano C (2004) Spectroscopy 18:415–422

    CAS  Google Scholar 

  2. Notingher I, Selvakumaran J, Hench LL (2004) Biosens Bioelectron 20(4):780–789

    Article  CAS  Google Scholar 

  3. Uzunbajakava N, Lenferink A, Kraan Y, Volokhina E, Vrensen G, Greve J et al (2003) Biophys J 84(6):3968–3981

    CAS  Google Scholar 

  4. Notingher I, Verrier S, Haque S, Polak JM, Hench LL (2003) Biopolymers 72(4):230–240

    Article  CAS  Google Scholar 

  5. Holman HYN, Martin MC, Blakely EA, Bjornstad K, McKinney WR (2000) Biopolymers (Biospectroscopy) 57:329–335

    Article  CAS  Google Scholar 

  6. Short KW, Carpenter S, Freyer JP, Mourant JR (2005) Biophys J 88:4274–4288

    Article  CAS  Google Scholar 

  7. Mourant JR, Canpolat M, Brocker C, Esponda-Ramos O, Johnson TM, Matanock A et al (2000) J Biomed Opt 5(2):131–137

    Article  CAS  Google Scholar 

  8. Mourant JR, Yamada YR, Carpenter S, Dominique LR, Freyer JP (2003) Biophys J 85(3):1938–1947

    CAS  Google Scholar 

  9. Matthaus C, Boydston-White S, Miljkovic M, Romeo M, Diem M (2006) Appl Spectrosc 60(1):1–8

    Article  CAS  Google Scholar 

  10. Notingher I, Bisson I, Bishop AE, Randle WL, Polak JM, Hench LL (2004) Anal Chem 76(11):3185–3193

    Article  CAS  Google Scholar 

  11. Notingher I, Jell G, Lohbauer U, Salih V, Hench LL (2004) J Cell Biochem 92(6):1180–1192

    Article  CAS  Google Scholar 

  12. Holman HYN, Bjornstad K, Mc Namara MP, Martin MC, McKinney WR, Blakely EA (2002) J Biomed Opt 7(3):417–424

    Article  Google Scholar 

  13. Notingher I, Verrier S, Romanska H, Bishop AE, Polak JM, Hench LL (2002) Spectroscopy Int J 16(2):43–51

    CAS  Google Scholar 

  14. Puppels GJ, Olminkhof JH, Segers-Nolten GM, Otto C, de Mul FF, Greve J (1991) Exp Cell Res 195(2):361–367

    Article  CAS  Google Scholar 

  15. Ramser K, Bjerneld EJ, Fant C, Kall M (2003) J Biomedical Optics 8(2):173–178

    Article  CAS  Google Scholar 

  16. Keselowsky BG, Collard DM, Garcia AJ (2005) Proc Natl Acad Sci USA 102(17):5953–5957

    Article  CAS  Google Scholar 

  17. Gaudet C, Marganski WA, Kim S, Brown CT, Gunderia V, Dembo M et al (2003) Biophys J 85(5):3329–3335

    CAS  Google Scholar 

  18. Keselowsky BG, Collard DM, Garcia AJ (2004) Biomaterials 25(28):5947–5954

    Article  CAS  Google Scholar 

  19. Garcia AJ, Vega MD, Boettiger D (1999) Mol Biol Cell 10(3):785–798

    CAS  Google Scholar 

  20. Allen LT, Tosetto M, Miller IS, O’Connor DP, Penney SC, Lynch I et al (2006) Biomaterials 27(16):3096–3108

    Article  CAS  Google Scholar 

  21. Brodbeck WG, Shive MS, Colton E, Nakayama Y, Matsuda T, Anderson JM (2001) J Biomed Mater Res 55(4):661–668

    Article  CAS  Google Scholar 

  22. Shen M, Horbett TA (2001) J Biomed Mater Res 57(3):336–345

    Article  CAS  Google Scholar 

  23. Redey SA, Nardin M, Bernache-Assolant D, Rey C, Delannoy P, Sedel L et al (2000) J Biomed Mater Res 50(3):353–364

    Article  CAS  Google Scholar 

  24. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) J Cell Biol 106(3):761–771

    Article  CAS  Google Scholar 

  25. Boudreau NJ, Jones PL (1999) Biochem J 339:481–488

    Article  CAS  Google Scholar 

  26. Colognato H, Yurchenco PD (2000) Dev Dyn 218(2):213–234

    Article  CAS  Google Scholar 

  27. Frushour BG, Koenig JL (1975) Biopolymers 14(2):379–391

    Article  CAS  Google Scholar 

  28. Mousia Z, Farhat IA, Pearson M, Chesters MA, Mitchell JR (2001) Biopolymers 62(4):208–218

    Article  CAS  Google Scholar 

  29. O’Brien J, Wilson I, Orton T, Pognan P (2000) Eur J Biochem 267:5421–5426

    Article  CAS  Google Scholar 

  30. Slaughter MR, Bugelski PJ, O’ Brien PJ (1999) Toxicology In Vitro 13:567–569

    Article  CAS  Google Scholar 

  31. Borenfreund E, Puerner JA (1984) J Tissue Cult Methods 9:7–9

    Article  Google Scholar 

  32. Mammone T, Gan D, Collins D, Lockshin RA, Marenus K, Maes D (2000) Cell Biol Toxicol 16(5):293–302

    Article  CAS  Google Scholar 

  33. Zhang SZ, Lipsky MM, Trump BF, Hsu IC (1990) Cell Biol Toxicol 6(2):219–234

    Article  CAS  Google Scholar 

  34. Ahmad H, Saleemuddin M (1985) Anal Biochem 148(2):533–541

    Article  CAS  Google Scholar 

  35. Liebsch HM, Spielmann H (1995) Methods Mol Biol 43:177–187

    CAS  Google Scholar 

  36. Ní Shúilleabháin S, Mothersill C, Sheehan D, O’Brien NM, O’ Halloran J, Van Pelt FNAM, Davoren M (2004) Toxicol In Vitro 18(3):365–376

    Article  CAS  Google Scholar 

  37. Murali Krishna C, Kegelaer G, Adt I, Rubin S, Kartha VB, Manfait M et al (2005) Biochim Biophys Acta 1726(2):160–167

    CAS  Google Scholar 

  38. Nijssen A, Bakker Schut TC, Heule F, Caspers PJ, Hayes DP, Neumann MH et al (2002) J Invest Dermatol 119(1):64–69

    Article  CAS  Google Scholar 

  39. Synytsya A, Alexa P, Besserer J, De Boer J, Froschauer S, Gerlach R et al (2004) Int J Radiat Biol 80(8):581–591

    Article  CAS  Google Scholar 

  40. Edwards HGM, Carter EA (2000) Biological applications of Raman spectroscopy. Infrared and Raman spectroscopy of biological materials (practical spectroscopy) Gremlich HU, Yan B (eds)421–477

  41. Puppels GJ, Garritsen HS, Segers-Nolten GM, de Mul FF, Greve J (1991) Biophys J 60(5):1046–1056

    Article  CAS  Google Scholar 

  42. Gault N, Lefaix JL (2003) Radiat Res 160(2):238–250

    Article  CAS  Google Scholar 

  43. Gault N, Poncy JL, Lefaix JL (2004) Can J Physiol Pharmacol 82(1):38–49

    Article  CAS  Google Scholar 

  44. Gault N, Rigaud O, Poncy JL, Lefaix JL (2005) Int J Radiat Biol 81(10):767–779

    Article  CAS  Google Scholar 

  45. Zellmer S, Zimmermann I, Selle C, Sternberg B, Pohle W, Lasch J (1998) Chem Phys Lipids 94(1):97–108

    Article  CAS  Google Scholar 

  46. Evis Z, Sato M, Webster TJ (2006) Increased osteoblast adhesion on nanograined hydroxyapatite and partially stabilized zirconia composites. J Biomed Mater Res A

  47. Rouahi M, Gallet O, Champion E, Dentzer J, Hardouin P, Anselme K (2006) Influence of hydroxyapatite microstructure on human bone cell response. J Biomed Mater Res A

  48. Zhu X, Eibl O, Scheideler L, Geis-Gerstorfer J (2006) Characterization of nano hydroxyapatite/collagen surfaces and cellular behaviors. J Biomed Mater Res A

  49. Chun J, Auer KA, Jacobson BS (1997) J Cell Physiol 173(3):361–370

    Article  CAS  Google Scholar 

  50. Bill HM, Knudsen B, Moores SL, Muthuswamy SK, Rao VR, Brugge JS et al (2004) Mol Cell Biol 24(19):8586–8599

    Article  CAS  Google Scholar 

  51. Putnins EE, Firth JD, Lohachitranont A, Uitto VJ, Larjava H (1999) Cell Adhes Commun 7(3):211–221

    Article  CAS  Google Scholar 

  52. Doornaert B, Leblond V, Planus E, Galiacy S, Laurent VM, Gras G et al (2003) Exp Cell Res 287(2):199–208

    Article  CAS  Google Scholar 

  53. Sutherland J, Denyer M, Britland S (2005) J Anat 207(1):67–78

    Article  CAS  Google Scholar 

  54. Brumfeld V, Werber MM (1993) Arch Biochem Biophys 302(1):134–143

    Article  CAS  Google Scholar 

  55. Gazi E, Dwyer J, Lockyer NP, Miyan J, Gardner P, Hart C, Brown M, Clarke NW (2005) Biopolymers 77:18–30

    Article  CAS  Google Scholar 

  56. O Faolain E, Hunter MB, Byrne JM, Kelehan P, McNamara M, Byrne HJ et al (2005) Vibr Spectrosc 38(1–2):121–127

    Article  CAS  Google Scholar 

  57. Krishna CM, Sockalingum GD, Kurien J, Rao L, Venteo L, Pluot M et al (2004) Appl Spectrosc 58(9):1128–1135

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding through the Dublin Institute of Technology TERS 2004 scheme. The Focas Institute, DIT has been established under the Irish HEA Programme for Research in Third Level Institutions, Cycle 1 (1999–2001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aidan D. Meade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meade, A.D., Lyng, F.M., Knief, P. et al. Growth substrate induced functional changes elucidated by FTIR and Raman spectroscopy in in–vitro cultured human keratinocytes. Anal Bioanal Chem 387, 1717–1728 (2007). https://doi.org/10.1007/s00216-006-0876-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0876-5

Keywords

Navigation