Skip to main content
Log in

Separation and characterization of oxaliplatin dinucleotides from DNA using HPLC-ESI ion trap mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Oxaliplatin is a third-generation platinum complex, and has a broad spectrum of antitumor activity. Such platinum complexes with the DACH carrier ligand have recently received increasing attention since they show efficacy against cisplatin-resistant cell lines. As the foremost indication of antitumor activity of platinum drugs is the formation of adducts with genomic DNA, calf thymus DNA-oxaliplatin adducts were the major target in this study. Calf thymus DNA was incubated with oxaliplatin, resulting in the formation of a large number of platinum-DNA adducts. Treated DNA was digested into the dinucleotides with a combination of enzymes, namely, benzonase, alkaline phosphatase, and nuclease S1. Using a high-performance liquid chromatography, we carried out the separation of individual platinum-DNA adducts which were concurrently identified using electrospray ionization ion trap mass spectrometry (MS). Both 1,2-intrastrand and 1,2-interstrand cross-linked adducts were found; however, those of the intrastrand nature have a considerably higher abundance than those of the interstrand cross-links. Among them, d(GpG)-oxaliplatin was the most abundant bifuctional adduct. To a lesser extent, a few monofunctional adducts were detected as well. MSn experiments served to ascertain the detailed structures of oxaliplatin adducts of dinucleoside monophosphates and of dinucleotides.

Three-dimensional view of the d(GpG)-Pt(DACH) adduct of m/z 902 (a) and of the d(ApG)-Pt(DACH) adduct of m/z 886 (b). DACH 1,2-diaminocyclohexane, green phosphorus, red oxygen, light blue carbon, dark blue nitrogen, gray platinum

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Misset JL, Bleiberg H, Sutherland W, Bekradda M, Cvitkovic E (2000) Crit Rev Oncol Hematol 35:75–93

    Article  CAS  Google Scholar 

  2. Cunningham D (2006) EJC Suppl 4:10–13

    CAS  Google Scholar 

  3. Malina J, Novakova O, Vojtiskova M, Natile G, Brabec V (2007) Biophys J 93:3950–3962

    Article  CAS  Google Scholar 

  4. Saris CP, van de Vaart PJM, Rietbroek RC, Blommaert FA (1996) Carcinogenesis 17:2763–2769

    Article  CAS  Google Scholar 

  5. Woynarowski JM, Chapman WG, Napier C, Herzig MCS, Juniewicz PE (1998) Mol Pharmacol 54:770–777

    CAS  Google Scholar 

  6. Woynarowski JM, Faivre S, Herzig MCS, Arnett B, Chapman WG, Trevino AV, Raymond E, Chaney SG, Vaisman A, Varchenko M, Juniewicz PE (2000) Mol Pharmacol 58:920–927

    CAS  Google Scholar 

  7. Faivre S, Chan D, Salinas R, Woynarowska B, Woynarowski JM (2003) Biochem Pharmacol 66:225–237

    Article  CAS  Google Scholar 

  8. Eastman A (1987) Pharmacol Ther 34:155–166

    Article  CAS  Google Scholar 

  9. Chaney SG, Campbell SL, Bassett E, Wu Y (2005) Crit Rev Oncol Hematol 53:3–11

    Article  Google Scholar 

  10. Gately DP, Howell SB (1993) Br J Cancer 67:1171–1176

    CAS  Google Scholar 

  11. Perez RP (1998) Eur J Cancer 34:1535–1542

    Article  CAS  Google Scholar 

  12. Aebi S, Kurdi-Haidar B, Gordon R, Cenni B, Zheng H, Fink D, Christen RD, Boland CR, Koi M, Fishel R, Howell SB (1996) Cancer Res 56:3087–3090

    CAS  Google Scholar 

  13. Fink D, Nebel S, Aebi S, Zheng H, Cenni B, Nehmé A, Christen RD, Howell SB (1996) Cancer Res 56:4881–4886

    CAS  Google Scholar 

  14. Vaisman A, Varchenko M, Umar A, Kunkel TA, Risinger JI, Barrett JC, Hamilton TC, Chancy SG (1998) Cancer Res 58:3579–3585

    CAS  Google Scholar 

  15. Jennerwein MM, Eastman A, Khokhar A (1989) Chem Biol Interact 70:39–49

    Article  CAS  Google Scholar 

  16. Küng A, Strickmann DB, Galanski M, Keppler BK (2001) J Inorg Biochem 86:691–698

    Article  Google Scholar 

  17. Almeida GM, Duarte TL, Steward WP, Jones GDD (2006) DNA Repair 5:219–225

    Article  CAS  Google Scholar 

  18. Goodisman J, Hagrman D, Tacka KA, Souid AK (2006) Cancer Chemother Pharmacol 57:257–267

    Article  CAS  Google Scholar 

  19. Le Pla RC, Ritchie KJ, Henderson CJ, Wolf CR, Harrington CF, Farmer PB (2007) Chem Res Toxicol 20:1177–1182

    Article  CAS  Google Scholar 

  20. Hah SS, Sumbad RA, de Vere White RW, Turteltaub KW, Henderson PT (2007) Chem Res Toxicol 20:1745–1751

    Article  CAS  Google Scholar 

  21. Baik MH, Friesner RA, Lippard SJ (2003) J Am Chem Soc 125:14082–14092

    Article  CAS  Google Scholar 

  22. Mantri Y, Lippard SJ, Baik MH (2007) J Am Chem Soc 129:5023–5030

    Article  CAS  Google Scholar 

  23. Scheeff ED, Briggs JM, Howell SB (1999) Mol Pharmacol 56:633–643

    CAS  Google Scholar 

  24. Sharma S, Gong P, Temple B, Bhattacharyya D, Dokholyan NV, Chaney SG (2007) J Mol Biol 373:1123–1140

    Article  CAS  Google Scholar 

  25. Janning P, Schrader W, Linscheid M (1994) Rapid Commun Mass Spectrom 8:1035–1040

    Article  CAS  Google Scholar 

  26. Schrader W, Linscheid M (1995) J Chromatogr A 717:117–125

    Article  CAS  Google Scholar 

  27. Bartolini WP, Bentzley CM, Johnston MV, Larsen BS (1999) J Am Soc Mass Spectrom 10:521–528

    Article  CAS  Google Scholar 

  28. Hagemeister T, Linscheid M (2002) J Mass Spectrom 37:731–747

    Article  CAS  Google Scholar 

  29. Pullman A, Pullman B (1981) Q Rev Biophys 14:289–380

    Article  CAS  Google Scholar 

  30. Yuriev E, Orbell JD (1996) Inorg Chem 35:7914–7915

    Article  CAS  Google Scholar 

  31. Arpalahti J (1999) In: Lippert B (eds) Cisplatin chemistry and biochemistry of a leading anticancer drug. Wiley-VCH, Weinheim

    Google Scholar 

  32. Rodgers MT, Campbell S, Marzluff EM, Beauchamp JL (1994) Int J Mass Spectrom Ion Process 137:121–149

    Article  CAS  Google Scholar 

  33. Monjardet-Bas V, Bombard S, Chottard JC, Kozelka J (2003) Chem Eur J 9:4739–4745

    Article  CAS  Google Scholar 

  34. Hagemeister T (2003) Ionenfallen-Massenspektrometrie von Cisplatin-DNA-Addukten. Logos, Berlin

    Google Scholar 

  35. Gupta R, Beck JL, Sheil MM, Ralph SF (2005) J Inorg Biochem 99:552–559

    Article  CAS  Google Scholar 

  36. Pan S, Verhoeven K, Lee JK (2005) J Am Soc Mass Spectrom 16:1853–1865

    Article  CAS  Google Scholar 

  37. Monn STM, Schürch S (2007) J Am Soc Mass Spectrom 18:984–990

    Article  CAS  Google Scholar 

  38. Wang Z, Wan KX, Ramanathan R, Taylor JS, Gross ML (1998) J Am Soc Mass Spectrom 9:683–691

    Article  CAS  Google Scholar 

  39. Springer A, Bürgel C, Böhrsch V, Mitrić R, Bonačić-Koutecký V, Linscheid MW (2006) ChemPhysChem 7:1779–1785

    Article  CAS  Google Scholar 

  40. Frańska M, Frański R, Schroeder G, Springer A, Beck S, Linscheid M (2005) Rapid Commun Mass Spectrom 19:970–974

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Arab Republic of Egypt for a grant to S.M. and to the DFG for financial support to M.L.; Stefan Pieper’s expert technical assistance with the mass spectrometer is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Linscheid.

Additional information

Abbreviations

They are shown in Fig. 1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mowaka, S., Linscheid, M. Separation and characterization of oxaliplatin dinucleotides from DNA using HPLC-ESI ion trap mass spectrometry. Anal Bioanal Chem 392, 819–830 (2008). https://doi.org/10.1007/s00216-008-2311-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2311-6

Keywords

Navigation