Skip to main content
Log in

Potential application of Raman spectroscopy for determining burial duration of skeletal remains

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Raman spectroscopy was used to study trends in chemical composition of bones in a burial environment. A turkey bone was sectioned and buried for short intervals between 12 and 62 days. Buried sections were analyzed using Raman microspectroscopy with 785 nm excitation. The results indicate that chemical changes in bone due to soil bacteria are time-dependent. Spectroscopic trends within buried bone segments were correlated to burial duration. A preliminary model was constructed using peak integration of Raman bands. Data collected within buried bone segments fit very well in this model. The model constructed is sensitive to changes in bone composition in a scale of days. This study illustrates the great potential of Raman spectroscopy as a non-destructive method for estimating the burial duration of bone for forensic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brettell TA, Butler JM, Almirall JR (2009) Forensic Science. Anal Chem 81(12):4695–4711

    Article  CAS  Google Scholar 

  2. Boddington A, Garland AN (1987) Death, decay and reconstruction: approaches to archaeology and forensic science. Manchester University, Manchester

    Google Scholar 

  3. Houck M, Seiegel J (2006) Fundamentals of forensic science. Elsevier Limited, Burlington

    Google Scholar 

  4. Reeves NM (2009) Taphonomic effects of vulture scavenging. J Forensic Sci 54(3):523–528

    Article  Google Scholar 

  5. Nagy G, Lorand T, Patonai Z, Montsko G, Bajnoczky I, Marcsik A, Mark L (2008) Analysis of pathological and non-pathological human skeletal remains by FT-IR spectroscopy. Forensic Sci Int 175(1):55–60

    Article  CAS  Google Scholar 

  6. Quickenden TI, Cooper PD (2001) Increasing the specificity of the forensic luminol test for blood. Luminescence 16(3):251–253

    Article  CAS  Google Scholar 

  7. Introna F, Di Vella G, Campobasso CP (1999) Determination of postmortem interval from old skeletal remains by image analysis of luminol test results. J Forensic Sci 44(3):535–538

    CAS  Google Scholar 

  8. Ramsthaler F, Kreutz K, Zipp K, Verhoff MA (2009) Dating skeletal remains with luminol-chemiluminescence. Validity, intra- and interobserver error. Forensic Sci Int 187(1–3):47–50

    Article  CAS  Google Scholar 

  9. Swift B (1998) Dating human skeletal remains: investigating the viability of measuring the equilibrium between Po-210 and Pb-210 as a means of estimating the post-mortem interval. Forensic Sci Int 98(1–2):119–126

    Article  CAS  Google Scholar 

  10. Wild EM, Arlamovsky KA, Golser R, Kutschera W, Priller A, Puchegger S, Rom W, Steier P, Vycudilik W (2000) 14C dating with the bomb peak: an application to forensic medicine. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 172(1–4):944–950

    Article  CAS  Google Scholar 

  11. Middleton J (1845) On fluorine in bones, its source, and its application to the determination of the geological age of fossil bones. Q J Geol Soc 1(1):214–216

    Article  Google Scholar 

  12. Johnsson K (1997) Chemical dating of bones based on diagenetic changes in bone apatite. J Archaeol Sci 24(5):431–437

    Article  Google Scholar 

  13. Leitnerwild E, Steffan I (1993) Uranium-series dating of fossil bones from Alpine caves. Archaeometry 35:137–146

    Article  CAS  Google Scholar 

  14. Schwarcz HP, Agur K, Jantz LM (2010) A new method for determination of postmortem interval: citrate content of bone. J Forensic Sci 55:1516–1522

    Article  Google Scholar 

  15. Bertoluzza A, Brasili P, Castri L, Facchini F, Fagnano C, Tinti A (1997) Preliminary results in dating human skeletal remains by Raman spectroscopy. J Raman Spectrosc 28(2–3):185–188

    Article  CAS  Google Scholar 

  16. Buckwalter JA, Glimcher MJ, Cooper RR, Recker R (1995) Bone biology. 1. Structure, blood-supply, cells, matrix, and mineralization. J Bone Jt Surg Am 77A(8):1256–1275

    Google Scholar 

  17. Vitagliano L, Nemethy G, Zagari A, Scheraga HA (1993) Stabilization of the triple-helical structure of natural collagen by side-chain interactions. Biochemistry 32(29):7354–7359

    Article  CAS  Google Scholar 

  18. Bhatnagar RS, Pattabiraman N, Sorensen KR, Langridge R, Macelroy RD, Renugopalakrishnan V (1988) Inter-chain proline–proline contacts contribute to the stability of the triple helical conformation. J Biomol Struct Dyn 6(2):223

    Article  CAS  Google Scholar 

  19. Lazarev YA, Grishkovsky BA, Khromova TB, Lazareva AV, Grechishko VS (1992) Bound water in the collagen-like triple-helical structure. Biopolymers 32(2):189–195

    Article  CAS  Google Scholar 

  20. Lazarev YA, Grishkovsky BA, Khromova TB (1985) Amide-I band of Ir-spectrum and structure of collagen and related polypeptides. Biopolymers 24(8):1449–1478

    Article  CAS  Google Scholar 

  21. Lazarev YA, Lazareva AV, Shibnev A, Esipova NG (1978) Infrared-spectra and structure of synthetic polytripeptides. Biopolymers 17(5):1197–1214

    Article  CAS  Google Scholar 

  22. Pfretzschner HU (2006) Collagen gelatinization: the key to understand early bone-diagenesis. Palaeontogr Abt A 278(1–6):135

    Google Scholar 

  23. Hedges REM (2002) Bone diagenesis: an overview of processes. Archaeometry 44:319–328

    Article  CAS  Google Scholar 

  24. Collins MJ, Riley MS, Child AM, Turnerwalker G (1995) A basic mathematical simulation of the chemical degradation of ancient collagen. J Archaeol Sci 22(2):175–183

    Article  Google Scholar 

  25. Turban-Just S (1997) Biogenic decomposition of bone collagens. Anthropologischer Anzeiger; Bericht uber die biologisch-anthropologische Literatur 55(2):131–141

    CAS  Google Scholar 

  26. Virkler K, Lednev IK (2009) Raman spectroscopic signature of semen and its potential application to forensic body fluid identification. Forensic Sci Int 193(1–3):56–62

    Article  CAS  Google Scholar 

  27. Virkler K, Lednev IK (2009) Blood species identification for forensic purposes using Raman spectroscopy combined with advanced statistical analysis. Anal Chem 81(18):7773–7777

    Article  CAS  Google Scholar 

  28. Virkler K, Lednev IK (2010) Forensic body fluid identification: the Raman spectroscopic signature of saliva. Analyst 135(3):512–517

    Article  CAS  Google Scholar 

  29. Virkler K, Lednev IK (2010) Raman spectroscopic signature of blood and its potential application to forensic body fluid identification. Anal Bioanal Chem 396(1):525–534

    Article  CAS  Google Scholar 

  30. Sikirzhytski V, Virkler K, Lednev IK (2010) Discriminant analysis of Raman spectra for body fluid identification for forensic purposes. Sensors 10(4):2869–2884

    Article  CAS  Google Scholar 

  31. Stich S, Bard D, Gros L, Wenz HW, Yarwood J, Williams K (1998) Raman microscopic identification of gunshot residues. J Raman Spectrosc 29(9):787–790

    Article  CAS  Google Scholar 

  32. Hodges CM, Akhavan J (1990) The use of Fourier-transform Raman-spectroscopy in the forensic identification of illicit drugs and explosives. Spectroc Acta Pt A Molec Biomolec Spectr 46(2):303–307

    Article  Google Scholar 

  33. Carver FWS, Sinclair TJ (1983) Spectroscopic studies of explosives. 1. Detection of nitro-compounds on silica-gel and carbon by non-resonant Raman-spectroscopy. J Raman Spectrosc 14(6):410–414

    Article  CAS  Google Scholar 

  34. Lewis IR, Daniel NW, Chaffin NC, Griffiths PR, Tungol MW (1995) Raman spectroscopic studies of explosive materials: towards a fieldable explosives detector. Spectroc Acta Pt A Molec Biomolec Spectr 51(12):1985–2000

    Article  Google Scholar 

  35. Sands HS, Hayward IP, Kirkbride TE, Bennett R, Lacey RJ, Batchelder DN (1998) UV-excited resonance Raman spectroscopy of narcotics and explosives. J Forensic Sci 43(3):509–513

    CAS  Google Scholar 

  36. Wolfe J, Exline DL (2003) Characterization of condom lubricant components using Raman spectroscopy and Raman chemical imaging. J Forensic Sci 48(5):1065–1074

    CAS  Google Scholar 

  37. Coyle T, Anwar N (2009) A novel approach to condom lubricant analysis: in-situ analysis of swabs by FT-Raman spectroscopy and its effects on DNA analysis. Sci Justice 49(1):32–40

    Article  CAS  Google Scholar 

  38. Nafie LA (2001) Theory of Raman scattering. In: Lewis IR, Edwards HGM (eds) Handbook of Raman spectroscopy: from the research laboratory to the process line. Marcel Dekker, Inc., New York

    Google Scholar 

  39. Freeman JJ, Silva MJ (2002) Separation of the Raman spectral signatures of bioapatite and collagen in compact mouse bone bleached with hydrogen peroxide. Appl Spectrosc 56(6):770–775

    Article  CAS  Google Scholar 

  40. Penel G, Leroy G, Bres E (1998) New preparation method of bone samples for Raman microspectrometry. Appl Spectrosc 52(2):312–313

    Article  CAS  Google Scholar 

  41. Le Blond S, Guilminot E, Lemoine G, Huet N, Mevellec JY (2009) FT-Raman spectroscopy: a positive means of evaluating the impact of whale bone preservation treatment. Vib Spectrosc 51(2):156–161

    Article  Google Scholar 

  42. Prystupa DA, Donald AM (1996) Infrared study of gelatin conformations in the gel and sol states. Polym Gels Netw 4(2):87–110

    Article  CAS  Google Scholar 

  43. Nielsen-Marsh CM, Hedges REM, Mann T, Collins MJ (2000) A preliminary investigation of the application of differential scanning calorimetry to the study of collagen degradation in archaeological bone. Thermochim Acta 365(1–2):129–139

    Article  CAS  Google Scholar 

  44. Wang Y, Purrello R, Jordan T, Spiro TG (1991) UVRR spectroscopy of the peptide-bond. 1. Amide-S, a nonhelical structure marker, is a C-alpha-H bending mode. J Am Chem Soc 113(17):6359–6368

    Article  CAS  Google Scholar 

  45. Austin JC, Jordan T, Spiro TG (1993) Ultraviolet resonance Raman studies of proteins and related model compounds. Biomol Spectrosc 20A:55–127

    Google Scholar 

  46. Wojtuszewski K, Mukerji I (2004) The HU-DNA binding interaction probed with UV resonance Raman spectroscopy: structural elements of specificity. Protein Sci 13(9):2416–2428

    Article  CAS  Google Scholar 

  47. Evershed RP, Dudd SN, Charters S, Mottram H, Stott AW, Raven A, van Bergen PF, Bland HA (1999) Lipids as carriers of anthropogenic signals from prehistory. Philos Trans R Soc Lond Ser B Biol Sci 354(1379):19–31

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the University at Albany benevolence fund for providing financial support for this research project and Aliaksandra Sikirzhytskaya for designing the online abstract figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor K. Lednev.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLaughlin, G., Lednev, I.K. Potential application of Raman spectroscopy for determining burial duration of skeletal remains. Anal Bioanal Chem 401, 2511–2518 (2011). https://doi.org/10.1007/s00216-011-5338-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5338-z

Keywords

Navigation