Skip to main content
Log in

Exploring the feasibility of bioaerosol analysis as a novel fingerprinting technique

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The purpose of this review is to investigate the feasibility of bioaerosol fingerprinting based on current understanding of cellular debris (with emphasis on human-emitted particulates) in aerosols and arguments regarding sampling, sensitivity, separations, and detection schemes. Target aerosol particles include cellular material and proteins emitted by humans, animals, and plants and can be regarded as information-rich packets that carry biochemical information specific to the living organisms present where the sample is collected. In this work we discuss sampling and analysis techniques that can be integrated with molecular (e.g. protein)-detection procedures to properly assess the aerosolized cellular material of interest. Developing a detailed understanding of bioaerosol molecular profiles in different environments suggests exciting possibilities of bioaerosol analysis with applications ranging from military defense to medical diagnosis and wildlife identification

Feasibility of identifying humans via bioaerosols is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ariya PA, Sun J, Eltouny NA, Hudson ED, Hayes CT, Kos G (2009) Physical and chemical characterization of bioaerosols-Implications for nucleation processes. Int Rev Phys Chem 28(1):1–32

    CAS  Google Scholar 

  2. Tyndall J (1884) Essays on the Floating-Matter of the Air in Relation to Putrefaction and Infection. D. Appleton and Company, New York

    Google Scholar 

  3. Hoefs J (2006) Stable Isotope Geochemistry. 5th ed2003, Berlin, Germany: Springer

  4. Rogge WF, Medeiros PM, Simoneit BRT (2006) Organic marker compounds for surface soil and fugitive dust from open lot dairies and cattle feedlots. Atmos Environ 40(1):27–49

    CAS  Google Scholar 

  5. Rogge WF, Medeiros PM, Simoneit BRT (2007) Organic marker compounds in surface soils of crop fields from the San Joaquin Valley fugitive dust characterization study. Atmos Environ 41(37):8183–8204

    CAS  Google Scholar 

  6. Belan BD, Borodulin AI, Marchenko YV, Ol’kin SE, Panchenko MV, P’Yankov OV, Safatov AS, Buryak GA (2000) Study of atmospheric aerosol protein components variability above forest areas in the south of western Siberia. Dokl Akad Nauk 374(6):827–829

    CAS  Google Scholar 

  7. Hock N, Schneider J, Borrmann S, Rompp A, Moortgat G, Franze T, Schauer C, Poschl U, Plass-Dulmer C, Berresheim H (2008) Rural continental aerosol properties and processes observed during the Hohenpeissenberg aerosol characterization experiment. Atmos Chem Phys 8:603–623

    CAS  Google Scholar 

  8. Jaenicke R (2005) Abundance of cellular material and proteins in the atmosphere. Science 308:73

    CAS  Google Scholar 

  9. Milstone LM (2004) Epidermal desquamation. J Dermatol Sci 36(3):131–140

    Google Scholar 

  10. Face Recognition Home Page. Available from: http://www.face-rec.org/

  11. Clark RP (1974) Skin scales among airborn particles. J Hyg 72(1):47

    CAS  Google Scholar 

  12. Clark RP, Shirley SG (1973) Identification of skin in airborne particulate matter. Nature 246(5427):39–40

    CAS  Google Scholar 

  13. Tovey ER, Kemp AS, Almqvist C, Sharland A, Marks GB (2007) Do immune responses to inhaled skin flakes modulate the expression of allergic disease? Clin Exp Allergy 37(8):1199–1203

    CAS  Google Scholar 

  14. Bahadori TH, Suh H, Koutrakis P (1999) Issues in human particulate exposure assessment: Relationship between outdoor, indoor, and personal exposures. Hum Ecol Risk Assess 5(3):459–470

    Google Scholar 

  15. Discovery Channel Videos, D.J.D.S.W. [cited 2011 June 6th ]; Available from: http://dsc.discovery.com/videos/dirty-jobs-dead-skin-weight.html

  16. Laumbach RJ, Kipen HM (2005) Bioaerosols and sick building syndrome: particles, inflammation, and allergy. Curr Opin Allergy Clin Immunol 5(2):135–139

    Google Scholar 

  17. Candi E, Schmidt R, Melino G (2005) The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Bio 6(4):328–340

    CAS  Google Scholar 

  18. Fuchs E (1995) Keratins and the skin. Annu Rev Cell Dev Bio 11:123–153

    CAS  Google Scholar 

  19. Sun TT, Green H (1976) Differentiation of epidermal keratinocyte in cell-culture - formation of cornified envelope. Cell 9(4):511–521

    CAS  Google Scholar 

  20. Rothman S (1954) In Physiology and biochemistry of the skin. University of Chicago Press

  21. Lidwell OM, Mackintosh CA, Towers AG (1978) Evaluation of fabrics in relation to their use as protective garments in nursing and surgery. 2. dispersal of skin organisms in a test chamber. J Hyg 81(3):453–469

    CAS  Google Scholar 

  22. Mackintosh CA, Lidwell OM, Towers AG (1978) Dimensions of skin fragments dispersed into air during activity. J Hyg 81(3):471

    CAS  Google Scholar 

  23. Tham KW, Zuraimi MS (2005) Size relationship between airborne viable bacteria and particles in a controlled indoor environment study. Indoor Air 15:48–57

    Google Scholar 

  24. Wesley NO, Maibach HI (2003) Racial (ethnic) differences in skin properties - The objective data. Am J Clin Dermatol 4(12):843–860

    Google Scholar 

  25. Zhongwu S, Xueliang G, Hongfei Z, Qing W, Bing B (2008) Analysis on keratin amino acids in the feather of cranes and storks and the application in species indentification. Sci Silvae Sin 44(3):102–106

    Google Scholar 

  26. Plewig G (1970) Regional differences of cell sizes in human stratum corneum. 2. effects of sex and age. J Invest Dermatol 54(1):19

    CAS  Google Scholar 

  27. Plewig G, Marples RR (1970) Regional differences of cell sizes in human stratum corneum. J Invest Dermatol 54(1):13

    CAS  Google Scholar 

  28. Grove GL, Kligman AM (1983) Age-associated changes in human epidermal-cell renewal. J Gerontol 38(2):137–142

    CAS  Google Scholar 

  29. Guz NV, Gaikwad RM, Dokukin ME, Sokolov I (2009) A novel in vitro stripping method to study geometry of corneocytes with fluorescent microscopy: example of aging skin. Skin Res Technol 15(4):379–383

    CAS  Google Scholar 

  30. Fluhr JW, Pelosi A, Lazzerini S, Dikstein S, Berardesca E (2001) Differences in corneocyte surface area in pre- and post-menopausal women - Assessment with the noninvasive videomicroscopic imaging of corneocytes method (VIC) under basal conditions. Skin Pharmacol Appl 14:10–16

    Google Scholar 

  31. Leveque JL, Corcuff P, Derigal J, Agache P (1984) In vivo Studies Of The Evolution Of Physical-Properties Of The Human-Skin With Age. Int J Dermatol 23(5):322–329

    CAS  Google Scholar 

  32. Corcuff P, Leveque JL (1988) Corneocyte changes after acute UV irradiation and chronic solar exposure. Photodermatology 5(3):110–115

    CAS  Google Scholar 

  33. Edwards A, Hammond HA, Jin L, Caskey CT, Chakraborty R (1992) Genetic-variation at 5 trimeric and tetrameric tandem repeat loci In 4 human-population groups. Genomics 12(2):241–253

    CAS  Google Scholar 

  34. Kimpton CP, Gill P, Walton A, Urquhart A, Millican ES, Adams M (1993) Automated DNA profiling employing multiplex amplification of short tandem repeat loci. PCR Methods Appl 3(1):13–22

    CAS  Google Scholar 

  35. Van Hoofstat DEO, Deforce DLD, De Pauw IPH, Van den Eeckhout EG (1999) DNA typing of fingerprints using capillary electrophoresis: Effect of dactyloscopic powders. Electrophoresis 20(14):2870–2876

    Google Scholar 

  36. Schulz MM, Reichert W, Wehner HD, Mattern R (2004) An already archived latent fingerprint as a DNA source for STR typing in a murder case. Arch Kriminol 213(5–6):165–170

    Google Scholar 

  37. VanOorschot RAH, Jones MK (1997) DNA fingerprints from fingerprints. Nature 387(6635):767–767

    CAS  Google Scholar 

  38. Kisilevsky AE, Wickenheiser RA (1999) DNA PCR profiling of skin cells transferred through handling. Edmonton, Alberta

  39. Wickenheiser RA (2002) Trace DNA: A review, discussion of theory, and application of the transfer of trace quantities of DNA through skin contact. J Forensic Sci 47(3):442–450

    CAS  Google Scholar 

  40. Schulz MM, Reichert W (2002) Archived or directly swabbed latent fingerprints as a DNA source for STR typing. Forensic Sci Int 127(1–2):128–130

    CAS  Google Scholar 

  41. Herber B, Herold K (1998) DNA typing of human dandruff. J Forensic Sci 43(3):648–656

    CAS  Google Scholar 

  42. Lippens S, Denecker G, Ovaere P, Vandenabeele P, Declercq W (2005) Death penalty for keratinocytes: apoptosis versus cornification. Cell Death Differ 12:1497–1508

    CAS  Google Scholar 

  43. Findlay I, Taylor A, Quirke P, Frazier R, Urquhart A (1997) DNA fingerprinting from single cells. Nature 389(6651):555–556

    CAS  Google Scholar 

  44. Gill P, Whitaker J, Flaxman C, Brown N, Buckleton J (2000) An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA. Forensic Sci Int 112(1):17–40

    CAS  Google Scholar 

  45. Williams AC, Barry BW (1992) Skin absorption enhancers. Crit Rev Ther Drug 9(3–4):305–353

    CAS  Google Scholar 

  46. Ayala FJ (1982) Genetic variation in natural-populations- problem of electrophoretically cryptic alleles. Proc Natl Acad Sci USA-Biol 79(2):550–554

    CAS  Google Scholar 

  47. Ramshaw JAM, Coyne JA, Lewontin RC (1979) The sensitivity of gel electrophoresis as a detector of genetic variation. Genetics 93(4):1019–1037

    CAS  Google Scholar 

  48. Korge BP, Gan SQ, McBride OW, Mischke D, Steinert PM (1992) Extensive size polymorphism of the human keratin-10 chain resides in the C-terminal V2 subdomain due to variable numbers and sizes of glycine loops. Proc Natl Acad Sci USA 89(3):910–914

    CAS  Google Scholar 

  49. Fruetel JA, West JAA, Debusschere BJ, Hukari K, Lane TW, Najm HN, Ortega J, Renzi RF, Shokair I, VanderNoot VA (2008) Identification of viruses using microfluidic protein profiling and bayesian classification. Anal Chem 80(23):9005–9012

    CAS  Google Scholar 

  50. Stachowiak JC, Shugard EE, Mosier BP, Renzi RF, Caton PF, Ferko SM, de Vreugde JLV, Yee DD, Haroldsen BL, VanderNoot VA (2007) Autonomous microfluidic sample preparation system for protein profile-based detection of aerosolized bacterial cells and spores. Anal Chem 79(15):5763–5770

    CAS  Google Scholar 

  51. Collof MJ (2009) Dust mites. CSIRO Publishing & Springer, Dordrecht, The Netherlands

    Google Scholar 

  52. Anderson NL, Anderson NG (2002) The human plasma proteome - history, character, and diagnostic prospects. Mol Cell Proteomics 1(11):845–867

    CAS  Google Scholar 

  53. Borges CR, Rehder DS, Jarvis JW, Schaab MR, Oran PE, Nelson R (2010) Full-length characterization of proteins in human populations. Clin Chem 56(2):202–211

    CAS  Google Scholar 

  54. Anderson NL, Polanski M, Pieper R, Gatlin T, Tirumalai RS, Conrads TP, Veenstra TD, Adkins JN, Pounds JG, Fagan R, Lobley A (2004) The human plasma proteome - A nonredundant list developed by combination of four separate sources. Mol Cell Proteomics 3(4):311–326

    CAS  Google Scholar 

  55. Nedelkov D, Kiernan UA, Niederkofler EE, Tubbs KA, Nelson RW (2005) Investigating diversity in human plasma proteins. Proc Natl Acad Sci USA 102(31):10852–10857

    CAS  Google Scholar 

  56. Nedelkov D, Phillips DA, Tubbs KA, Nelson RW (2007) Investigation of human protein variants and their frequency in the general population. Mol Cell Proteomics 6(7):1183–1187

    CAS  Google Scholar 

  57. Nedelkov D, Tubbs KA, Niederkofler EE, Kiernan UA, Nelson RW (2004) High-throughput comprehensive analysis of human plasma proteins: A step toward population proteomics. Anal Chem 76(6):1733–1737

    CAS  Google Scholar 

  58. Moll R, Franke WW, Schiller DL, Geiger B, Krepler R (1982) The catalog of human cytokeratins - patterns of expression in normal epithelia, tumors and cultured-cells. Cell 31(1):11–24

    CAS  Google Scholar 

  59. Morley SM (1997) Keratin and the skin: past, present and future. QJ Med 90:433–435

    CAS  Google Scholar 

  60. Fox K, Castanha E, Fow A, Feigley C, Salzberg D (2008) Human K10 epithelial keratin is the most abundant protein in airborne dust of both occupied and unoccupied school rooms. J Environ Monitor 10:55–59

    CAS  Google Scholar 

  61. Brush AH (1986) Tissue specific protein heterogeneity in keratin structures. Biochem Syst Ecol 14(5):547–551

    CAS  Google Scholar 

  62. Mischke D, Wild G (1987) Polymorphic keratins in human epidermis. J Invest Dermatol 88(3):191–197

    CAS  Google Scholar 

  63. Plowman JE (2007) The proteomics of keratin proteins. J Chromatogr B 849:181–189

    CAS  Google Scholar 

  64. Lampe MA, Burlingame AL, Whitney J, Williams ML, Brown BE, Roitman E, Elias PM (1983) Human stratum-corneum lipids - characterization and regional variations. J Lipid Res 24(2):120–130

    CAS  Google Scholar 

  65. Dayan N (2008) Skin aging handbook- an integrated approach to biochemistry and product development. ed. N. Dayan: William Andrew Publishing

  66. Gao Z, Tseng CH, Pei ZH, Blaser MJ (2007) Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci USA 104(8):2927–2932

    CAS  Google Scholar 

  67. Edwards HGM, Hunt DE, Sibley MG (1998) FT-Raman spectroscopic study of keratotic materials: horn, hoof and tortoiseshell. Spectrochim Acta A 54(5):745–757

    Google Scholar 

  68. Espinoza EO, Baker BW (2007) The analysis of sea turtle and bovid keratin artefacts using drift spectroscopy and discriminant analysis. Archaeom 49(4):685–698

    CAS  Google Scholar 

  69. Peccia J, Hernandez M (2006) Incorporating polymerase chain reaction-based identification, population characterization, and quantification of microorganisms into aerosol science: A review. Atmos Environ 40(21):3941–3961

    CAS  Google Scholar 

  70. Negrin MM, Del Panno MT, Ronco AE (2007) Study of bioaerosols and site influence in, the La Plata area (Argentina) using conventional and DNA (fingerprint) based methods. Aerobiol 23(4):249–258

    Google Scholar 

  71. Maron PA, Lejon DPH, Carvalho E, Bizet K, Lemanceau P, Ranjard L, Mougel C (2005) Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16S rDNA clone library. Atmos Environ 39(20):3687–3695

    CAS  Google Scholar 

  72. Pyankov OV, Agranovshi IE, Pyankov O, Mokhonova E, Mokhonova V, Safatov AS, Khromykh AA (2007) Using a bioaerosol personal sampler in combination with real-time PCR analysis for rapid detection of airborne viruses. Environ Microbiol 9(4):992–1000

    CAS  Google Scholar 

  73. Agranovski IE, Safatov AS, Sergeev AA, Pyankov OV, Petrishchenko VA, Mikheev MV, Sergeev AN (2006) Rapid detection of airborne viruses by personal bioaerosol sampler combined with the PCR device. Atmos Environ 40(21):3924–3929

    CAS  Google Scholar 

  74. Agranovski IE, Safatov AS, Agafonov AP, Pyankov OV, Sergeev AN (2008) Monitoring of airborne mumps and measles viruses in a hospital. Clean 36(10–11):845–849

    CAS  Google Scholar 

  75. Lee H, Williams SKR, Wahl KL (2003) Analysis of whole bacterial cells by flow field-flow fractionation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 75(11):2746–2752

    CAS  Google Scholar 

  76. Desai MJ, Armstrong DW (2003) Separation, identification, and characterization of microorganisms by capillary electrophoresis. Microbiol Mol Bio Rev 67(1):38

    CAS  Google Scholar 

  77. Ebersole RC, McCormick RM (1993) Separation and isolation of viable bacteria by capillary zone electrophoresis. Nat Biotechnol 11(11):1278–1282

    CAS  Google Scholar 

  78. Ho J (2002) Future of biological aerosol detection. Anal Chim Acta 457(1):125–148

    CAS  Google Scholar 

  79. Renzi RF, Stamps J, Horn BA, Ferko S, VanderNoot VA, West JAA, Crocker R, Wiedenman B, Yee D, Fruetel JA (2005) Hand-held microanalytical instrument for chip-based electrophoretic separations of proteins. Anal Chem 77(2):435–441

    CAS  Google Scholar 

  80. Curran AM, Rabin SI, Furton KG (2005) Analysis of the uniqueness and persistence of human scent. Forensic Sci Comm [online] 7(2)

  81. Curran AM, Prada PA, Furton KG (2010) The differentiation of the voltile organic signatures of individuals through SPME-GC/MS of characteristic human scent compounds. J Forensic Sci 55(1):50–57

    CAS  Google Scholar 

  82. Curran AM (2007) The frequency of occurrence and discriminatory power of compounds found in human scent across a population determined by SPME-GEMS. J Chromatogr B 846(1–2):86–97

    CAS  Google Scholar 

  83. Griffiths WD, Decosemo GAL (1994) The assessment of bioaerosols - a critical review. J Aerosol Sci 25(8):1425–1458

    CAS  Google Scholar 

  84. Lacey J, Venette J (1995) In Bioaerosols handbook. CRC Press/Lewis Publishers Inc.; CRC Press/Lewis Publishers. p. 407-471

  85. Levetin E (2004) Methods for aeroallergen sampling. Curr Allergy Asthma R 4(5):376–383

    Google Scholar 

  86. Muilenberg ML (2003) Sampling devices. Immunol Allergy Clin 23(3):337

    Google Scholar 

  87. Staton SJR, Castillo JA, Taylor TJ, Herckes P, Hayes, MA Detecting a “Naked” Person in the Desert: Indentifying Environmental from Bioaerosol Material using HPLC, unpublished

  88. Burge HA (1992) Monitoring for airborn allergens. Ann Allergy 69(1):9–18

    CAS  Google Scholar 

  89. Buttner MP, Willeke K, Grinsphun SA (2002) Sampling and analysis of airborn microorganisms. Hurst CJ, Editor ASM Press, Washington, DC, pp 814–826

    Google Scholar 

  90. Eduard W, Heederik D (1998) Methods for quantitative assessment of airborne levels of noninfectious microorganisms in highly contaminated work environments. Am Ind Hyg Assoc J 59(2):113–127

    CAS  Google Scholar 

  91. Menetrez MY, Foarde KK, Esch RK, Schwartz TD, Dean TR, Hays MD, Cho SH, Betancourt DA, Moore SA (2009) An evaluation of indoor and outdoor biological particulate matter. Atmos Environ 43(34):5476–5483

    CAS  Google Scholar 

  92. Pohlker C, Huffman JA, Poschl U (2011) Autofluorescence of atmospheric bioaerosols- fluorescent biomolecules ans potential interferences. Atmos Meas Tech Discuss 4:5857–5933

    Google Scholar 

  93. Pan YL, Pinnick RG, Hill SC, Rosen JM, Chang RK (2007) Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico. J Geophys Res 112(D24)

  94. Rosch P, Harz M, Peschke KD, Ronneberger O, Birkhardt H, Schule A, Schmauz G, Lankers M, Hofer S, Thiele H, Motzkus HW, Popp J (2006) On-line monitoring and identification of bioaerosols. Anal Chem 78(7):2163–2170

    Google Scholar 

  95. Sengupta A, Brar N, Davis EJ (2007) Bioaerosol detection and characterization by surface-enhanced Raman spectroscopy. J Colloid Interface Sci 309(1):36–43

    CAS  Google Scholar 

  96. Ben-David A, Ren H (2003) Detection, identification, and estimation of biological aerosols and vapors with a Fourier-transform infrared spectrometer. Appl Optics 42(24):4887–4900

    CAS  Google Scholar 

  97. Chen KP, Pacheco JR, Staton SRJ, Hayes MA (2009) Insulator-based dielectrophoretic separation of small particles in a sawtooth channel. Electrophoresis 30(9):1441–1448

    CAS  Google Scholar 

  98. Meighan MM, Keebaugh MW, Quihuis AM, Kenyon SM, Hayes MA (2009) Electrophoretic exclusion for the selective transport of small molecules. Electrophoresis 30(21):3786–3792

    CAS  Google Scholar 

  99. Kleefsman I, Stowers MA, Verheijen PJT, Van Wuijckhuijse AL, Kientz CE, Marijnissen JCM (2007) Bioaerosol analysis by single particle mass spectrometry. KONA 24:85–90

    CAS  Google Scholar 

  100. Canagaratna MR, Jayne JT, Jimenez JL, Allan JD, Alfarra MR, Zhang Q, Onasch TB, Drewnick F, Coe H, Middlebrook A, Delia A, Williams LR, Trimborn AM, Northway MJ, DeCarlo PF, Kilb CE, Davidovits P, Worsnop DR (2007) Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom Rev 26(2):185–222

    CAS  Google Scholar 

  101. Kim JK, Jackson SN, Murray KK (2005) Matrix-assisted laser desorption/ionization mass spectrometry of collected bioaerosol particles. Rapid Commun Mass Spectrom 19(12):1725–1729

    CAS  Google Scholar 

  102. Stowers MA, van Wuijckhuijse AL, Marijnissen JCM, Kientz CE, Ciach T (2006) Fluorescence preselection of bioaerosol for single-particle mass spectrometry. Appl Optics 45(33):8531–8536

    CAS  Google Scholar 

  103. van Wuijckhuijse AL, Stowers MA, Kleefsman WA, van Baar BLM, Kientz CE, Marijnissen JCM (2005) Matrix-assisted laser desorption/ionisation aerosol time-of-flight mass spectrometry for the analysis of bioaerosols: development of a fast detector for airborne biological pathogens. J Aerosol Sci 36(5–6):677–687

    Google Scholar 

  104. Srivastava A, Pitesky ME, Steele PT, Tobias HJ, Fergenson DP, Horn JM, Russell SC, Czerwieniec GA, Lebrilla CS, Gard EE, Frank M (2005) Comprehensive assignment of mass spectral signatures from individual Bacillus atrophaeus spores in matrix-free laser desorption/ionization bioaerosol mass spectrometry. Anal Chem 77(10):3315–3323

    CAS  Google Scholar 

  105. Steele PT, Tobias HJ, Fergenson DP, Pitesky ME, Horn JM, Czerwieniec GA, Russell SC, Lebrilla CB, Gard EE, Frank M (2003) Laser power dependence of mass spectral signatures from individual bacterial spores in bioaerosol mass spectrometry. Anal Chem 75(20):5480–5487

    CAS  Google Scholar 

  106. Anhalt JP, Fenselau C (1975) Identification of bacteria using mass-spectrometry. Anal Chem 47(2):219–225

    CAS  Google Scholar 

  107. Demirev PA, Fenselau C (2008) Mass spectrometry for rapid characterization of microorganisms. Annu Rev Anal Chem 1:71–93

    CAS  Google Scholar 

  108. Amiel C, Mariey L, Denis C, Pichon P, Travert J (2001) FTIR spectroscopy and taxonomic purpose: Contribution to the classification of lactic acid bacteria. Lait 81(1–2):249–255

    CAS  Google Scholar 

  109. Dharmaraj S, Jamaludin AS, Razak HM, Valliappan R, Ahman NA, Harn GL, Ismail Z (2006) The classification of Phyllanthus niruri Linn. according to location by infrared spectroscopy. Vib Spectrosc 41(1):68–72

    CAS  Google Scholar 

  110. Cabredo S, Parra A, Saenz C, Anzano J (2009) Bioaerosols chemometric characterization by laser-induced fluorescence: Air sample analysis. Talanta 77(5):1837–1842

    CAS  Google Scholar 

  111. Pysher MD, Hayes MA (2007) Electrophoretic and dielectrophoretic field gradient technique for separating bioparticles. Anal Chem 79(12):4552–4557

    CAS  Google Scholar 

  112. Staton SJR, Chen KP, Taylor TJ, Pacheco JR, Hayes MA (2010) Characterization of particle capture in a sawtooth patterned insulating electrokinetic microfluidic device. Electrophoresis 31(22):3634–3641

    CAS  Google Scholar 

Download references

Acknowledgements

Partial support for this work was provided by NIH 1 R21 EB010191-01A1, Arizona Applied NanoTechnology Sensors (ASU Vice President for Research Office), and Bioaerosols for Pattern Recognition (ASU Vice President for Research Office)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Hayes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castillo, J.A., Staton, S.J.R., Taylor, T.J. et al. Exploring the feasibility of bioaerosol analysis as a novel fingerprinting technique. Anal Bioanal Chem 403, 15–26 (2012). https://doi.org/10.1007/s00216-012-5725-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5725-0

Keyword

Navigation