Skip to main content

Advertisement

Log in

Rapid mastitis detection assay on porous nitrocellulose membrane slides

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We have developed a rapid mastitis detection test based on the immobilization of tag-specific antibody molecules, the binding of double-tagged amplicons, and as a secondary signal a conjugate of black carbon nanoparticles having molecules of a fusion protein of neutrAvidin and alkaline phosphatase at their surface. The antibodies were inkjet printed onto three different nitrocellulose membrane slides, Unisart (Sartorius), FAST (GE Whatman), and Oncyte-Avid (Grace-Biolabs), and the final assay signals on these slides were compared. The blackness of the spots was determined by flatbed scanning and assessment of the pixel gray volume using TotalLab image analysis software. The black spots could be easily read by the naked eye. We successfully demonstrated the detection of specific amplicons from mastitis-causing pathogens in less than 3 h. Using a similar protocol, we also showed that it was possible to detect specific amplicons from four different mastitis-causing pathogens (six strains) on the same pad. The influence of two different printing buffers, phosphate-buffered saline (pH 7.4) and carbonate buffer (pH 9.6), on the functionality of the primary antibodies was also compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Foudeh AM, Fatanat Didar T, Veres T, Tabrizian M (2012) Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics. Lab on a Chip 12(18):3249–3266

    Article  CAS  Google Scholar 

  2. Kostrzynska M, Bachand A (2006) Application of DNA microarray technology for detection, identification, and characterization of food-borne pathogens. Can J Microbiol 52(1):1–8. doi:10.1139/w05-105

    Article  CAS  Google Scholar 

  3. Seidel M, Niessner R (2008) Automated analytical microarrays: a critical review. Anal Bioanal Chem 391(5):1521–1544

    Article  CAS  Google Scholar 

  4. Noguera PS, Posthuma-Trumpie GA, van Tuil M, van der Wal FJ, de Boer A, Moers APHA, van Amerongen A (2011) Carbon nanoparticles as detection labels in antibody microarrays. Detection of genes encoding virulence factors in Shiga toxin-producing Escherichia coli. Anal Chem 83(22):8531–8536. doi:10.1021/ac201823v

    Google Scholar 

  5. Miller JC, Zhou H, Kwekel J, Cavallo R, Burke J, Butler EB, Teh BS, Haab BB (2003) Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics 3(1):56–63

    Article  CAS  Google Scholar 

  6. Ressine A, Marko-Varga G, Laurell T, El-Gewely MR (2007) Porous silicon protein microarray technology and ultra-/superhydrophobic states for improved bioanalytical readout. Biotechnol Annu Rev 13:149–200

    Google Scholar 

  7. Kim SY, Yu J, Son SJ, Min J (2010) Signal enhancement in a protein chip array using a 3-D nanosurface. Ultramicroscopy 110(6):659–665

    Article  CAS  Google Scholar 

  8. Mujawar LH, Norde W, van Amerongen A (2012) Spot morphology of non-contact printed protein molecules on non-porous substrates with a range of hydrophobicities. Analyst 138(2):518–524

    Article  Google Scholar 

  9. Mujawar LH, van Amerongen A, Norde W (2012) Influence of buffer composition on the distribution of inkjet printed protein molecules and the resulting spot morphology. Talanta 98:1–6

    Article  CAS  Google Scholar 

  10. Dufva M (2005) Fabrication of high quality microarrays. Biomol Eng 22(5–6):173–184

    Article  CAS  Google Scholar 

  11. Walter J-G, Stahl F, Reck M, Praulich I, Nataf Y, Hollas M, Pflanz K, Melzner D, Shoham Y, Scheper T (2010) Protein microarrays: reduced autofluorescence and improved LOD. Eng Life Sci 10(2):103–108. doi:10.1002/elsc.200900078

    CAS  Google Scholar 

  12. Stillman BA, Tonkinson JL (2000) FASTTM slides: a novel surface for microarrays. Biotechniques 29(3):630–635

    CAS  Google Scholar 

  13. Petrik J (2006) Diagnostic applications of microarrays. Transf Med 16(4):233–247. doi:10.1111/j.1365-3148.2006.00673.x

    Article  CAS  Google Scholar 

  14. Kukar T, Eckenrode S, Gu Y, Lian W, Megginson M, She J-X, Wu D (2002) Protein microarrays to detect protein–protein interactions using red and green fluorescent proteins. Anal Biochem 306(1):50–54

    Article  CAS  Google Scholar 

  15. Reck M, Stahl F, Walter JG, Hollas M, Melzner D, Scheper T (2007) Optimization of a microarray sandwich-ELISA against hINF-γ on a modified nitrocellulose membrane. Biotechnolgy Prog 23(6):1498–1505. doi:10.1021/bp070179i

    Article  CAS  Google Scholar 

  16. Koskinen MT, Holopainen J, Pyörälä S, Bredbacka P, Pitkälä A, Barkema HW, Bexiga R, Roberson J, Sølverød L, Piccinini R, Kelton D, Lehmusto H, Niskala S, Salmikivi L (2009) Analytical specificity and sensitivity of a real-time polymerase chain reaction assay for identification of bovine mastitis pathogens. J of Dairy Sci 92(3):952–959

    Article  CAS  Google Scholar 

  17. Pyorala S (2003) Indicators of inflammation in the diagnosis of mastitis. Vet Res 34(5):565–578

    Article  Google Scholar 

  18. Fox LK, Adams DS (2000) The ability of the enzyme-linked immunosorbent assay to detect antibody against Staphylococcus aureus in milk following experimental intramammary infection. J of Vet Med, Series B 47(7):517–526. doi:10.1046/j.1439-0450.2000.00379.x

    Article  CAS  Google Scholar 

  19. Cai HY, Bell-Rogers P, Parker L, Prescott JF (2005) Development of a real-time PCR for detection of Mycoplasma bovis in bovine milk and lung samples. J Vet Diagn Investig 17(6):537–545. doi:10.1177/104063870501700603

    Article  Google Scholar 

  20. Garcia-Cordero JL, Ricco AJ, Li D (2008) Lab-on-a-chip (general philosophy). In: Dongqin Li (ed) Encyclopedia of microfluidics and nanofluidics. Springer, New York. pp 962–969. doi:10.1007/978-0-387-48998-8_780

  21. Moon JS, Koo HC, Joo YS, Jeon SH, Hur DS, Chung CI, Jo HS, Park YH (2007) Application of a new portable microscopic somatic cell counter with disposable plastic chip for milk analysis. J of Dairy Sci 90(5):2253–2259

    Article  CAS  Google Scholar 

  22. Lee K-H, Lee J-W, Wang S-W, Liu L-Y, Lee M-F, Chuang S-T, Shy Y-M, Chang C-L, Wu M-C, Chi C-H (2008) Development of a novel biochip for rapid multiplex detection of seven mastitis-causing pathogens in bovine milk samples. J Vet Diagn Invest 20(4):463–471

    Article  Google Scholar 

  23. Lönnberg M, Carlsson J (2001) Quantitative detection in the attomole range for immunochromatographic tests by means of a flatbed scanner. Anal Biochem 293(2):224–231

    Article  Google Scholar 

  24. Noguera P, Posthuma-Trumpie G, van Tuil M, van der Wal F, de Boer A, Moers A, van Amerongen A (2011) Carbon nanoparticles in lateral flow methods to detect genes encoding virulence factors of Shiga toxin-producing Escherichia coli. Anal Bioanal Chem 399(2):831–838. doi:10.1007/s00216-010-4334-z

    Article  CAS  Google Scholar 

  25. Karoonuthaisiri N, Charlermroj R, Uawisetwathana U, Luxananil P, Kirtikara K, Gajanandana O (2009) Development of antibody array for simultaneous detection of foodborne pathogens. Biosens Bioelectron 24(6):1641–1648

    Article  CAS  Google Scholar 

  26. Ahmad AL, Low SC, Shukor SRA, Ismail A (2008) Synthesis and characterization of polymeric nitrocellulose membranes: influence of additives and pore formers on the membrane morphology. J Appl Polym Sci 108(4):2550–2557. doi:10.1002/app.27592

    Article  CAS  Google Scholar 

  27. Ahmad AL, Low SC, Shukor SRA, Ismail A (2011) Investigating membrane morphology and quality of immobilized protein for the development of lateral flow immunoassay. J Immunoass Immunochem 33(1):48–58. doi:10.1080/15321819.2011.591479

    Google Scholar 

  28. Irvine EJ, Hernandez-Santana A, Faulds K, Graham D (2011) Fabricating protein immunoassay arrays on nitrocellulose using Dip-pen lithography techniques. Analyst 136(14):2925–2930

    Article  CAS  Google Scholar 

  29. Arenkov P, Kukhtin A, Gemmell A, Voloshchuk S, Chupeeva V, Mirzabekov A (2000) Protein microchips: use for immunoassay and enzymatic reactions. Anal Biochem 278(2):123–131

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Dutch Technology Foundation STW, Applied-Science Division of NWO (Dutch Organisation for Scientific Research), and the Technology Program of the Ministry of Economic Affairs of The Netherlands. Dr. Gerard Wellenberg from the Animal Health Service, Deventer, The Netherlands, is acknowledged for providing pathogen primer sequences and DNA template samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aart van Amerongen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mujawar, L.H., Moers, A., Norde, W. et al. Rapid mastitis detection assay on porous nitrocellulose membrane slides. Anal Bioanal Chem 405, 7469–7476 (2013). https://doi.org/10.1007/s00216-013-7192-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7192-7

Keywords

Navigation