Skip to main content

Advertisement

Log in

Lipidomic profiling of plasma in patients with chronic hepatitis C infection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Chronic hepatitis C virus (HCV) infection is a global health issue. Although its progression is reported to be closely associated with lipids, the way in which the plasma lipidome changes during the development of chronic HCV infection in humans is currently unknown. Using an improved quantitative high-throughput lipidomic platform, we profiled 284 lipids in human plasma samples obtained from healthy controls (n = 11) and patients with chronic HCV infection (n = 113). The intrahepatic inflammation grade (IG) of liver tissue was determined by biopsy. Two types of mass spectrometers were integrated into a single lipidomic platform with a wide dynamic range. Compared with previous methods, the performance of this method was significantly improved in terms of both the number of target sphingolipids identified and the specificity of the high-resolution mass spectrometer. As a result, 44 sphingolipids, one diacylglycerol, 43 triglycerides, 24 glycerophosphocholines, and 5 glycerophospho-ethanolamines were successfully identified and quantified. The lipid profiles of individuals with chronic HCV infection were significantly different from those of healthy individuals. Several lipids showed significant differences between mild and severe intrahepatic inflammation grades, indicating that they could be utilized as novel noninvasive indicators of intrahepatic IG. Using multivariate analysis, healthy controls could be discriminated from HCV patients based on their plasma lipidome; however, patients with different IGs were not well discriminated. Based on these results, we speculate that variations in lipid composition arise as a result of HCV infection, and are caused by HCV-related digestive system disorders rather than progression of the disease.

Flowchart of the lipidomic platform

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c
Fig. 3

Similar content being viewed by others

Abbreviations

DG:

Diacylglycerol

HCV:

Hepatitis C virus

HPLC-MS:

High-performance liquid chromatography tandem mass spectrometry

HRMS:

High-resolution mass spectrometry

IG:

Inflammation grade

LDA:

Lipid data analyzer

LTQ-FT:

Hybrid ion trap–Fourier transform mass spectrometry

MS:

Mass spectrometry

MTBE:

Methyl-tert-butyl ether

OPLS-DA:

Orthogonal partial least squares discriminant analysis

PC:

Glycerophosphocholine

PE:

Glycerophosphoethanolamine

QC:

Quality control

QQQ:

Triple quadrupole mass spectrometry

SM:

Sphingomyelin

TG:

Triglyceride

References

  1. Alter MJ (2007) Epidemiology of hepatitis C virus infection. World J Gastroenterol WJG 13(17):2436–2441

    Google Scholar 

  2. Sherman M, Shafran S, Burak K, Doucette K, Wong W, Girgrah N, Yoshida E, Renner E, Wong P, Deschenes M (2007) Management of chronic hepatitis C: consensus guidelines. Can J Gastroenterol J Can Gastroenterol 21(Suppl C):25C–34C

    Google Scholar 

  3. Davis GL, Albright JE, Cook SF, Rosenberg DM (2003) Projecting future complications of chronic hepatitis C in the United States. Liver Transplant Off Publ Am Assoc Study Liver Dis Int Liver Transplant Soc 9(4):331–338

    Article  Google Scholar 

  4. Ghany MG, Kleiner DE, Alter H, Doo E, Khokar F, Promrat K, Herion D, Park Y, Liang TJ, Hoofnagle JH (2003) Progression of fibrosis in chronic hepatitis C. Gastroenterology 124(1):97–104

    Article  Google Scholar 

  5. Bravo AA, Sheth SG, Chopra S (2001) Liver biopsy. N Engl J Med 344(7):495–500

    Article  CAS  Google Scholar 

  6. Brown HA, Marnett LJ (2011) Introduction to lipid biochemistry, metabolism, and signaling. Chem Rev 111(10):5817–5820

    Article  CAS  Google Scholar 

  7. Puri R, Duong M, Uno K, Kataoka Y, Nicholls SJ (2012) The emerging role of plasma lipidomics in cardiovascular drug discovery. Expert Opin Drug Discov 7(1):63–72

    Article  CAS  Google Scholar 

  8. Zehethofer N, Pinto DM (2008) Recent developments in tandem mass spectrometry for lipidomic analysis. Anal Chim Acta 627(1):62–70

    Article  CAS  Google Scholar 

  9. Szymanska E, van Dorsten FA, Troost J, Paliukhovich I, van Velzen EJ, Hendriks MM, Trautwein EA, van Duynhoven JP, Vreeken RJ, Smilde AK (2012) A lipidomic analysis approach to evaluate the response to cholesterol-lowering food intake. Metabolomics Off J Metabolomic Soc 8(5):894–906

    Article  CAS  Google Scholar 

  10. Chan RB, Oliveira TG, Cortes EP, Honig LS, Duff KE, Small SA, Wenk MR, Shui G, Di Paolo G (2012) Comparative lipidomic analysis of mouse and human brain with Alzheimer disease. J Biol Chem 287(4):2678–2688

    Article  CAS  Google Scholar 

  11. Hu C, Wei H, van den Hoek AM, Wang M, van der Heijden R, Spijksma G, Reijmers TH, Bouwman J, Wopereis S, Havekes LM, Verheij E, Hankemeier T, Xu G, van der Greef J (2011) Plasma and liver lipidomics response to an intervention of rimonabant in ApoE*3Leiden.CETP transgenic mice. PloS One 6(5):e19423

    Article  CAS  Google Scholar 

  12. Li M, Zhou Z, Nie H, Bai Y, Liu H (2011) Recent advances of chromatography and mass spectrometry in lipidomics. Anal Bioanal Chem 399(1):243–249

    Article  CAS  Google Scholar 

  13. Yamamoto K, Isogai Y, Sato H, Taketomi Y, Murakami M (2011) Secreted phospholipase A2, lipoprotein hydrolysis, and atherosclerosis: integration with lipidomics. Anal Bioanal Chem 400(7):1829–1842

    Article  CAS  Google Scholar 

  14. Min HK, Lim S, Chung BC, Moon MH (2011) Shotgun lipidomics for candidate biomarkers of urinary phospholipids in prostate cancer. Anal Bioanal Chem 399(2):823–830

    Article  CAS  Google Scholar 

  15. Hart PJ, Francese S, Claude E, Woodroofe MN, Clench MR (2011) MALDI-MS imaging of lipids in ex vivo human skin. Anal Bioanal Chem 401(1):115–125

    Article  CAS  Google Scholar 

  16. Fernandez JA, Ochoa B, Fresnedo O, Giralt MT, Rodriguez-Puertas R (2011) Matrix-assisted laser desorption ionization imaging mass spectrometry in lipidomics. Anal Bioanal Chem 401(1):29–51

    Article  CAS  Google Scholar 

  17. Dennis EA (2009) Lipidomics joins the omics evolution. Proc Natl Acad Sci USA 106(7):2089–2090

    Google Scholar 

  18. Gao X, Zhang Q, Meng D, Isaac G, Zhao R, Fillmore TL, Chu RK, Zhou J, Tang K, Hu Z, Moore RJ, Smith RD, Katze MG, Metz TO (2012) A reversed-phase capillary ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) method for comprehensive top-down/bottom-up lipid profiling. Anal Bioanal Chem 402(9):2923–2933

    Article  CAS  Google Scholar 

  19. Chan SC, Lo SY, Liou JW, Lin MC, Syu CL, Lai MJ, Chen YC, Li HC (2011) Visualization of the structures of the hepatitis C virus replication complex. Biochem Biophys Res Commun 404(1):574–578

    Article  CAS  Google Scholar 

  20. Mannova P, Fang R, Wang H, Deng B, McIntosh MW, Hanash SM, Beretta L (2006) Modification of host lipid raft proteome upon hepatitis C virus replication. Mol Cell Proteomics MCP 5(12):2319–2325

    Article  CAS  Google Scholar 

  21. Bassendine MF, Sheridan DA, Felmlee DJ, Bridge SH, Toms GL, Neely RD (2011) HCV and the hepatic lipid pathway as a potential treatment target. J Hepatol 55(6):1428–1440

    Article  CAS  Google Scholar 

  22. Diamond DL, Syder AJ, Jacobs JM, Sorensen CM, Walters KA, Proll SC, McDermott JE, Gritsenko MA, Zhang Q, Zhao R, Metz TO, Camp DG 2nd, Waters KM, Smith RD, Rice CM, Katze MG (2010) Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. PLoS Pathog 6(1):e1000719

    Article  Google Scholar 

  23. Bielawski J, Szulc ZM, Hannun YA, Bielawska A (2006) Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods 39(2):82–91

    Article  CAS  Google Scholar 

  24. Qu F, Wu CS, Hou JF, Jin Y, Zhang JL (2012) Sphingolipids as new biomarkers for assessment of delayed-type hypersensitivity and response to triptolide. PloS One 7(12):e52454

    Article  CAS  Google Scholar 

  25. Hartler J, Trotzmuller M, Chitraju C, Spener F, Kofeler HC, Thallinger GG (2011) Lipid data analyzer: unattended identification and quantitation of lipids in LC-MS data. Bioinformatics 27(4):572–577

    Article  CAS  Google Scholar 

  26. Umetrics (2011) Simca −P and multivariate analysis: frequently asked questions, version 1.01. Umetrics, Umeå

  27. Ismail FW, Khan RA, Kamani L, Wadalawala AA, Shah HA, Hamid SS, Jafri W (2012) Nutritional status in patients with hepatitis C. J Coll Phys Surg Pak JCPSP 22(3):139–142

    Google Scholar 

  28. Pohjanen E, Thysell E, Jonsson P, Eklund C, Silfver A, Carlsson IB, Lundgren K, Moritz T, Svensson MB, Antti H (2007) A multivariate screening strategy for investigating metabolic effects of strenuous physical exercise in human serum. J Proteome Res 6(6):2113–2120

    Article  CAS  Google Scholar 

  29. Stenlund H, Gorzsas A, Persson P, Sundberg B, Trygg J (2008) Orthogonal projections to latent structures discriminant analysis modeling on in situ FT-IR spectral imaging of liver tissue for identifying sources of variability. Anal Chem 80(18):6898–6906

    Article  CAS  Google Scholar 

  30. Bao Y, Zhao T, Wang X, Qiu Y, Su M, Jia W, Jia W (2009) Metabonomic variations in the drug-treated type 2 diabetes mellitus patients and healthy volunteers. J Proteome Res 8(4):1623–1630

    Article  CAS  Google Scholar 

  31. Ejsing CS, Duchoslav E, Sampaio J, Simons K, Bonner R, Thiele C, Ekroos K, Shevchenko A (2006) Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal Chem 78(17):6202–6214

    Article  CAS  Google Scholar 

  32. Katajamaa M, Miettinen J, Oresic M (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22(5):634–636

    Article  CAS  Google Scholar 

  33. Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, Bandyopadhyay S, Jones KN, Kelly S, Shaner RL, Sullards CM, Wang E, Murphy RC, Barkley RM, Leiker TJ, Raetz CR, Guan Z, Laird GM, Six DA, Russell DW, McDonald JG, Subramaniam S, Fahy E, Dennis EA (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res 51(11):3299–3305

    Article  CAS  Google Scholar 

  34. Bird SS, Marur VR, Sniatynski MJ, Greenberg HK, Kristal BS (2011) Lipidomics profiling by high-resolution LC-MS and high-energy collisional dissociation fragmentation: focus on characterization of mitochondrial cardiolipins and monolysocardiolipins. Anal Chem 83(3):940–949

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Ministry of Science and Technology of the People’s Republic of China (2012ZX09301002-006), and the National Science and Technology Key Project on “Major Infectious Diseases such as HIV/AIDS, Viral Hepatitis Prevention and Treatment” (2012ZX10002004-006) are acknowledged.

Conflict of interest disclosure

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Lan Zhang or Zhong-Ping Duan.

Additional information

Feng Qu and Su-Jun Zheng are co-first author. Jin-Lan Zhang and Zhong-Ping Duan are co-correspondence author.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 703 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, F., Zheng, SJ., Wu, CS. et al. Lipidomic profiling of plasma in patients with chronic hepatitis C infection. Anal Bioanal Chem 406, 555–564 (2014). https://doi.org/10.1007/s00216-013-7479-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7479-8

Keywords

Navigation