Skip to main content
Log in

Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman spectroscopy (SERS) is a good candidate for the development of fast and easy-to-use diagnostic tools, possibly used on biofluids in point-of-care or screening tests. In particular, label-free SERS spectra of blood serum and plasma, two biofluids widely used in diagnostics, could be used as a metabolic fingerprinting approach for biomarker discovery. This study aims at a systematic evaluation of SERS spectra of blood serum and plasma, using various Ag and Au aqueous colloids, as SERS substrates, in combination with three excitation lasers of different wavelengths, ranging from the visible to the near-infrared. The analysis of the SERS spectra collected from 20 healthy subjects under a variety of experimental conditions revealed that intense and repeatable spectra are quickly obtained only if proteins are filtered out from samples, and an excitation in the near-infrared is used in combination with Ag colloids. Moreover, common plasma anticoagulants such as EDTA and citrate are found to interfere with SERS spectra; accordingly, filtered serum or heparin plasma are the samples of choice, having identical SERS spectra. Most bands observed in SERS spectra of these biofluids are assigned to uric acid, a metabolite whose blood concentration depends on factors such as sex, age, therapeutic treatments, and various pathological conditions, suggesting that, even when the right experimental conditions are chosen, great care must be taken in designing studies with the purpose of developing diagnostic tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xie W, Schlücker S (2013) Medical applications of surface-enhanced Raman scattering. Phys Chem Chem Phys 15:5329–5344. doi:10.1039/C3CP43858A

    Article  CAS  Google Scholar 

  2. Vendrell M, Maiti KK, Dhaliwal K, Chang Y-T (2013) Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol 31:249–257. doi:10.1016/j.tibtech.2013.01.013

    Article  CAS  Google Scholar 

  3. Pahlow S, März A, Seise B et al (2012) Bioanalytical application of surface- and tip-enhanced Raman spectroscopy. Eng Life Sci 12:131–143. doi:10.1002/elsc.201100056

    Article  CAS  Google Scholar 

  4. Chen R, Lin J, Feng S et al (2012) Applications of SERS spectroscopy for blood analysis. In: Ghomi M (ed) Adv. Biomed. Spectrosc. Ios Press, Amsterdam, pp 72–105

    Google Scholar 

  5. Han XX, Ozaki Y, Zhao B (2012) Label-free detection in biological applications of surface-enhanced Raman scattering. TrAC Trends Anal Chem 38:67–78. doi:10.1016/j.trac.2012.05.006

    Article  CAS  Google Scholar 

  6. Schlücker S (2011) Surface enhanced Raman spectroscopy: analytical, biophysical and life science applications. Wiley, New York

    Google Scholar 

  7. Larmour IA, Faulds K, Graham D (2012) SERS activity and stability of the most frequently used silver colloids. J Raman Spectrosc 43:202–206. doi:10.1002/jrs.3038

    Article  CAS  Google Scholar 

  8. Feng S, Chen R, Lin J et al (2010) Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis. Biosens Bioelectron 25:2414–2419. doi:10.1016/j.bios.2010.03.033

    Article  CAS  Google Scholar 

  9. Feng S, Chen R, Lin J et al (2011) Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light. Biosens Bioelectron 26:3167–3174. doi:10.1016/j.bios.2010.12.020

    Article  CAS  Google Scholar 

  10. Lin D, Feng S, Pan J et al (2011) Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis. Opt Express 19:13565–13577

    Article  CAS  Google Scholar 

  11. Lin J, Chen R, Feng S et al (2012) Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection: SERS spectroscopy for potential noninvasive nasopharyngeal cancer detection. J Raman Spectrosc 43:497–502. doi:10.1002/jrs.3072

    Article  CAS  Google Scholar 

  12. Feng S, Lin D, Lin J et al (2013) Blood plasma surface-enhanced Raman spectroscopy for non-invasive optical detection of cervical cancer. Analyst 138:3967–3974. doi:10.1039/c3an36890d

    Article  CAS  Google Scholar 

  13. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75. doi:10.1039/DF9511100055

    Article  Google Scholar 

  14. Kimling J, Maier M, Okenve B et al (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707. doi:10.1021/jp061667w

    Article  CAS  Google Scholar 

  15. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395. doi:10.1021/j100214a025

    Article  CAS  Google Scholar 

  16. Aroca R (2006) Surface-enhanced vibrational spectroscopy. Wiley, Chichester

    Book  Google Scholar 

  17. Leopold N, Lendl B (2003) A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J Phys Chem B 107:5723–5727. doi:10.1021/jp027460u

    Article  CAS  Google Scholar 

  18. Creighton JA, Blatchford CG, Albrecht MG (1979) Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J Chem Soc Faraday Trans 2 Mol Chem Phys 75:790–798

    Article  CAS  Google Scholar 

  19. Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV–vis spectra. Anal Chem 79:4215–4221. doi:10.1021/ac0702084

    Article  CAS  Google Scholar 

  20. Beleites C, Sergo V hyperSpec: a package to handle hyperspectral data sets in R

  21. Core Team R (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  22. Britton G, Liaaen-Jensen S, Pfander H (2009) Carotenoids, volume 5: nutrition and health. Springer, New York

    Book  Google Scholar 

  23. Munro CH, Smith WE, Garner M et al (1995) Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance Raman scattering. Langmuir 11:3712–3720. doi:10.1021/la00010a021

    Article  CAS  Google Scholar 

  24. Kiefer W, Köhler W, Möcks J et al (2005) Comparison of mid-infrared and Raman spectroscopy in the quantitative analysis of serum. J Biomed Opt 10:031108–03110810. doi:10.1117/1.1911847

    Article  CAS  Google Scholar 

  25. Rycenga M, Camargo PHC, Li W et al (2010) Understanding the SERS effects of single silver nanoparticles and their dimers, one at a time. J Phys Chem Lett 1:696–703. doi:10.1021/jz900286a

    Article  CAS  Google Scholar 

  26. Mock JJ, Norton SM, Chen S-Y et al (2011) Electromagnetic enhancement effect caused by aggregation on SERS-active gold nanoparticles. Plasmonics 6:113–124. doi:10.1007/s11468-010-9176-1

    Article  CAS  Google Scholar 

  27. Okamoto H, Imura K (2013) Visualizing the optical field structures in metal nanostructures. J Phys Chem Lett 4:2230–2241. doi:10.1021/jz401023d

    Article  CAS  Google Scholar 

  28. Henry A-I, Bingham JM, Ringe E et al (2011) Correlated structure and optical property studies of plasmonic nanoparticles. J Phys Chem C 115:9291–9305. doi:10.1021/jp2010309

    Article  CAS  Google Scholar 

  29. Gebauer JS, Malissek M, Simon S et al (2012) Impact of the nanoparticle–protein corona on colloidal stability and protein structure. Langmuir 28:9673–9679. doi:10.1021/la301104a

    Article  CAS  Google Scholar 

  30. Walkey CD, Chan WCW (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780. doi:10.1039/c1cs15233e

    Article  CAS  Google Scholar 

  31. Zhang D, Ansar SM, Vangala K, Jiang D (2010) Protein adsorption drastically reduces surface-enhanced Raman signal of dye molecules. J Raman Spectrosc 41:952–957. doi:10.1002/jrs.2548

    Article  CAS  Google Scholar 

  32. Premasiri WR, Lee JC, Ziegler LD (2012) Surface-enhanced Raman scattering of whole human blood, blood plasma, and red blood cells: cellular processes and bioanalytical sensing. J Phys Chem B 116:9376–9386. doi:10.1021/jp304932g

    Article  CAS  Google Scholar 

  33. Sánchez-Cortés S, García-Ramos JV (1998) Anomalous Raman bands appearing in surface-enhanced Raman spectra. J Raman Spectrosc 29:365–371. doi:10.1002/(SICI)1097-4555(199805)29:5<365::AID-JRS247>3.0.CO;2-Y

    Article  Google Scholar 

  34. Liu R, Zi X, Kang Y et al (2011) Surface-enhanced Raman scattering study of human serum on PVA Ag nanofilm prepared by using electrostatic self-assembly. J Raman Spectrosc 42:137–144. doi:10.1002/jrs.2665

    Article  CAS  Google Scholar 

  35. Lin J, Chen R, Feng S et al (2011) A novel blood plasma analysis technique combining membrane electrophoresis with silver nanoparticle-based SERS spectroscopy for potential applications in noninvasive cancer detection. Nanomed Nanotechnol Biol Med 7:655–663. doi:10.1016/j.nano.2011.01.012

    Article  CAS  Google Scholar 

  36. Tortora GJ, Derrickson BH (2009) Principles of anatomy and physiology. Wiley, Philadelphia

    Google Scholar 

  37. McClatchey KD (2002) Clinical laboratory medicine. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

Download references

Acknowledgements

AB, SdM, and VS gratefully acknowledge internal funding of the University of Trieste (FRA 2012). The authors thank all the volunteers who agreed to participate in this study by donating their blood.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alois Bonifacio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

PDF 1.56 MB

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonifacio, A., Dalla Marta, S., Spizzo, R. et al. Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study. Anal Bioanal Chem 406, 2355–2365 (2014). https://doi.org/10.1007/s00216-014-7622-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7622-1

Keywords

Navigation