Skip to main content

Advertisement

Log in

Direct detection of endogenous MicroRNAs and their post-transcriptional modifications in cancer serum by capillary electrophoresis-mass spectrometry

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

MicroRNA molecules (miRNAs) are a class of small, single-stranded, non-coding RNA molecules that regulate cellular messenger RNA and their corresponding proteins. Extracellular miRNAs circulate in the bloodstream inside exosomes or in complexes with proteins and lipoproteins. The miRNA sequences and their quantitative levels are used as unique signatures associated with cancer diagnosis and prognosis after anticancer treatment. MicroRNAs are modified through a series of processing events after transcription like 5’-end phosphorylation, 3’- end adenylation or uridylation, terminal nucleotide deletion. The problem is that existing bioanalytical methods such as microarrays and a quantitative polymerase chain reaction are sensitive, but not capable of identifying the post-transcriptional modifications of miRNA. Here we report a capillary electrophoresis-mass spectrometry (CE-MS) method, which performs a multiplex, direct analysis of miRNAs from biological samples. Using the CE-MS method, we detected two endogenous human circulating miRNAs, a 23-nucleotide long 5’-phosporylated miRNA with 3’-uridylation (iso-miR-16-5p), and a 22-nucleotide long 5’-phosporylated miRNA (miR-21-5p) isolated from B-cell chronic lymphocytic leukemia serum. The CE separation and following MS analysis provides label-free quantitation and reveals modifications of miRNAs. MicroRNA profiling of serum samples with CE-MS has the potential to be a versatile and minimally invasive bioassay that could lead to better clinical diagnostics and disease treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Almeida MI, Reis RM, Calin GA. MicroRNA history: discovery, recent applications, and next frontiers. Mutat Res, Fundam Mol Mech Mutagen. 2011;717(1):1–8.

    Article  CAS  Google Scholar 

  2. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene < i > lin-4</i > encodes small RNAs with antisense complementarity to < i > lin-14</i> Cell. 1993;75(5):843–54.

    Article  CAS  Google Scholar 

  3. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci. 2008;105(30):10513–8.

    Article  CAS  Google Scholar 

  4. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006. doi:10.1038/cr.2008.282.

    Article  CAS  Google Scholar 

  5. Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell. 2010;39(1):133–44. doi:10.1016/j.molcel.2010.06.010.

    Article  CAS  Google Scholar 

  6. Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 2010;38(20):7248–59. doi:10.1093/nar/gkq601.

    Article  CAS  Google Scholar 

  7. Wagner J, Riwanto M, Besler C, Knau A, Fichtlscherer S, Roxe T, et al. Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler Thromb Vasc Biol. 2013;33(6):1392–400. doi:10.1161/ATVBAHA.112.300741.

    Article  CAS  Google Scholar 

  8. Brase JC, Wuttig D, Kuner R, Sultmann H. Serum microRNAs as non-invasive biomarkers for cancer. Mol Cancer. 2010;9:306. doi:10.1186/1476-4598-9-306.

    Article  CAS  Google Scholar 

  9. Zen K, Zhang CY. Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev. 2012;32(2):326–48. doi:10.1002/med.20215.

    Article  Google Scholar 

  10. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141(5):672–5. doi:10.1111/j.1365-2141.2008.07077.x.

    Article  Google Scholar 

  11. Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001;294(5543):858–62.

    Article  CAS  Google Scholar 

  12. Thomson JM, Parker J, Perou CM, Hammond SM. A custom microarray platform for analysis of microRNA gene expression. Nat Methods. 2004;1(1):47–53.

    Article  CAS  Google Scholar 

  13. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of microRNAs by stem–-loop RT–-PCR. Nucleic Acids Res. 2005;33(20):e179–9.

  14. Cheng Y, Zhang X, Li Z, Jiao X, Wang Y, Zhang Y. Highly sensitive determination of microRNA using target‐primed and branched rolling‐circle amplification. Angewandte Chemie. 2009;121(18):3318–22.

    Article  Google Scholar 

  15. Zhang G-J, Chua JH, Chee R-E, Agarwal A, Wong SM. Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens Bioelectron. 2009;24(8):2504–8.

    Article  CAS  Google Scholar 

  16. Chen Y, Sinha K, Perumal K, Reddy R. Effect of 3'terminal adenylic acid residue on the uridylation of human small RNAs in vitro and in frog oocytes. RNA. 2000;6(9):1277–88.

    Article  CAS  Google Scholar 

  17. Ramachandran V, Chen X. Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science. 2008;321(5895):1490–2.

    Article  CAS  Google Scholar 

  18. Katoh T, Sakaguchi Y, Miyauchi K, Suzuki T, S-i K, Baba T, et al. Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly (A) polymerase GLD-2. Gene Dev. 2009;23(4):433–8.

    Article  CAS  Google Scholar 

  19. Jones MR, Quinton LJ, Blahna MT, Neilson JR, Fu S, Ivanov AR, et al. Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nature Cell Biol. 2009;11(9):1157–63.

    Article  CAS  Google Scholar 

  20. Wyman SK, Knouf EC, Parkin RK, Fritz BR, Lin DW, Dennis LM, et al. Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome Res. 2011;21(9):1450–61.

    Article  CAS  Google Scholar 

  21. Khan N, Cheng J, Pezacki JP, Berezovski MV. Quantitative analysis of microRNA in blood serum with protein-facilitated affinity capillary electrophoresis. Anal Chem. 2011;83(16):6196–201.

    Article  CAS  Google Scholar 

  22. Robledo VR, Smyth WF. Review of the CE‐MS platform as a powerful alternative to conventional couplings in bio‐omics and target‐based applications. Electrophoresis. 2014;35(16):2292–308.

  23. Huber CG, Buchmeiser MR. On-line cation exchange for suppression of adduct formation in negative-ion electrospray mass spectrometry of nucleic acids. Anal Chem. 1998;70(24):5288–95.

    Article  CAS  Google Scholar 

  24. Kohler M, Thomas A, Walpurgis K, Schänzer W, Thevis M. Mass spectrometric detection of siRNA in plasma samples for doping control purposes. Anal Bioanal Chem. 2010;398(3):1305–12.

    Article  CAS  Google Scholar 

  25. Kullolli M, Knouf E, Arampatzidou M, Tewari M, Pitteri SJ. Intact microRNA analysis using high resolution mass spectrometry. J Am Soc Mass Spectrom. 2014;25(1):80–7.

    Article  CAS  Google Scholar 

  26. Schmittgen TD. Microbiomarkers with big impact in CLL. Blood. 2013;122(11):1843–4.

    Article  CAS  Google Scholar 

  27. Tsimberidou AM, Keating MJ. Treatment of fludarabine‐refractory chronic lymphocytic leukemia. Cancer. 2009;115(13):2824–36.

    Article  CAS  Google Scholar 

  28. Moussay E, Wang K, Cho J-H, Van Moer K, Pierson S, Paggetti J, et al. MicroRNA as biomarkers and regulators in B-cell chronic lymphocytic leukemia. Proc Natl Acad Sci. 2011;108(16):6573–8.

    Article  CAS  Google Scholar 

  29. Tomimaru Y, Eguchi H, Nagano H, Wada H, Kobayashi S, Marubashi S, et al. Circulating < i > microRNA-21</i > as a novel biomarker for hepatocellular carcinoma. J Hepatol. 2012;56(1):167–75.

    Article  CAS  Google Scholar 

  30. Calin GA, Liu C-G, Sevignani C, Ferracin M, Felli N, Dumitru CD, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A. 2004;101(32):11755–60.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim V. Berezovski.

Ethics declarations

The authors have no conflict of interest, relevant affiliations, or financial involvements with any organization discussed in the manuscript. No writing assistance was utilized in the production of the manuscript.

Additional information

Published in the topical collection featuring Young Investigators in Analytical and Bioanalytical Science with guest editors S. Daunert, A. Baeumner, S. Deo, J. Ruiz Encinar, and L. Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, N., Mironov, G. & Berezovski, M.V. Direct detection of endogenous MicroRNAs and their post-transcriptional modifications in cancer serum by capillary electrophoresis-mass spectrometry. Anal Bioanal Chem 408, 2891–2899 (2016). https://doi.org/10.1007/s00216-015-9277-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9277-y

Keywords

Navigation