Skip to main content
Log in

In vitro metabolic profiling of synthetic cannabinoids by pooled human liver microsomes, cytochrome P450 isoenzymes, and Cunninghamella elegans and their detection in urine samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

As synthetic cannabinoids are extensively metabolized, there is an urgent need for data on which metabolites can be used for successful urine screening. This study examines the in vitro metabolism of EG-018 and its 5F-analogue EG-2201 by means of comparing three different in vitro models: pooled human liver microsomes, cytochrome P450 isoenzymes, and a fungal approach utilizing the filamentous fungus Cunninghamella elegans LENDNER, which is known for its ability to mimic human biotransformation of xenobiotics. In addition, this study includes the screening of two authentic urine samples from individuals with proven EG-018 consumption, for the evaluation of in vitro–in vivo extrapolations made in the study. Incubation with pooled human liver microsomes yielded 15 metabolites of EG-018 belonging to six different metabolite subgroups, and 21 metabolites of EG-2201 belonging to seven different metabolite subgroups, respectively. Incubation with cytochrome P450 isoenzymes incubation yielded a further three EG-018 and five EG-2201 metabolites. With reference to their summed metabolite peak abundancies, the isoenzymes CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5 were shown to contribute most to the microsomal metabolism of EG-018 and EG-2201. CYP2B6 was shown to make the lowest contribution, by far. As the phase I metabolism of both synthetic cannabinoids was shown to be distributed over a substantial number of different cytochrome P450 isoenzymes, it was concluded that it is likely to not be significantly affected by co-consumption of other drugs. Although fungal incubation with Cunninghamella elegans yielded an additional three EG-018 and four EG-2201 metabolites not observed after microsomal incubation, metabolites generated by Cunninghamella elegans were in good correlation with those generated by microsomal incubations. The fungal model demonstrated its ability to be an independent in vitro model in synthetic cannabinoid metabolism research. The three tested in vitro models enable sufficient predictive in vitro–in vivo extrapolations, comparable to those obtained from hepatocyte incubation published in the literature. In addition, with regard to the screening of authentic urine samples and comparison with the literature, one monohydroxylated EG-018 metabolite and two monohydroxylated EG-2201 metabolites can be recommended as urinary targets, on the basis of the tested in vitro models.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Winstock AR, Barratt MJ. Synthetic cannabis: a comparison of patterns of use and effect profile with natural cannabis in a large global sample. Drug Alcohol Depend. 2013;131(1-2):106–11. https://doi.org/10.1016/j.drugalcdep.2012.12.011.

    Article  CAS  PubMed  Google Scholar 

  2. Winstock A, Lynskey M, Borschmann R, Waldron J. Risk of emergency medical treatment following consumption of cannabis or synthetic cannabinoids in a large global sample. J Psychopharmacol. 2015;29(6):698–703. https://doi.org/10.1177/0269881115574493.

    Article  PubMed  Google Scholar 

  3. EMCDDA. Europäischer Drogenbericht 2016 - Trends und Entwicklungen (in German). European Drug Report 2016 - trends and developments. Luxembourg: European Monitoring Centre for Drugs and Drug Addiction; 2017.

    Google Scholar 

  4. Brunton LL, Lazo JS, Parker KL. Goodman & Gilman’s manual of pharmacology and therapeutics. 11th ed. New York: The McGraw-Hill Companies Inc.; 2008.

    Google Scholar 

  5. Fattore L, Fratta W. Beyond THC: the new generation of cannabinoid designer drugs. Front Behav Neurosci. 2011;5(60). https://doi.org/10.3389/fnbeh.2011.00060.

  6. Tait RJ, Caldicott D, Mountain D, Hill SL, Lenton S. A systematic review of adverse events arising from the use of synthetic cannabinoids and their associated treatment. Clin Toxicol. 2016;54(1):1–13. https://doi.org/10.3109/15563650.2015.1110590.

    Article  CAS  Google Scholar 

  7. Tournebize J, Gibaja V, Kahn J-P. Acute effects of synthetic cannabinoids: update 2015. Subst Abus. 2017;38(3):1–23. https://doi.org/10.1080/08897077.2016.1219438.

    Article  Google Scholar 

  8. EMCCDA/Europol. Annual report. Luxembourg: European Monitoring Centre for Drugs and Drug Addiction 2014.

  9. EMCDDA/Europol. Annual report. Luxembourg: European Monitoring Centre for Drugs and Drug Addiction 2016.

  10. Schoeder CT, Hess C, Madea B, Meiler J, Müller CE. Pharmacological evaluation of new constituents of “Spice”: synthetic cannabinoids based on indole, indazole, benzimidazole and carbazole scaffolds. Forensic Toxicol. 2018;36(2):385–403. https://doi.org/10.1007/s11419-018-0415-z.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wintermeyer A, Möller I, Thevis M, Jübner M, Beike J, Rothschild MA, et al. In vitro phase I metabolism of the synthetic cannabimimetic JWH-018. Anal Bioanal Chem. 2010;398(5):2141–53. https://doi.org/10.1007/s00216-010-4171-0.

    Article  CAS  PubMed  Google Scholar 

  12. Sobolevsky T, Prasolov I, Rodchenkov G. Detection of urinary metabolites of AM-2201 and UR-144, two novel synthetic cannabinoids. Drug Test Anal. 2012;4(10):745–53. https://doi.org/10.1002/dta.1418.

    Article  CAS  PubMed  Google Scholar 

  13. Chimalakonda KC, Seely KA, Bratton SM, Brents LK, Moran CL, Endres GW, et al. Cytochrome P450-mediated oxidative metabolism of abused synthetic cannabinoids found in K2/Spice: identification of novel cannabinoid receptor ligands. Drug Metab Dispos. 2012;40(11):2174–84. https://doi.org/10.1124/dmd.112.047530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moonhee J, Ilchung S, Wonkyung Y, Hvyjin C, Hye HY, Jaesin L, et al. Determination of major metabolites of MAM-2201 and JWH-122 in in vitro and in vivo studies to distinguish their intake. Forensic Sci Int. 2014;244:85–91. https://doi.org/10.1016/j.forsciint.2014.08.008.

    Article  CAS  Google Scholar 

  15. Castaneto MS, Wohlfarth A, Desrosiers NA, Hartman RL, Gorelick DA, Huestis MA. Synthetic cannabinoids pharmacokinetics and detection methods in biological matrices. Drug Metab Rev. 2015;47(2):124–74. https://doi.org/10.3109/03602532.2015.1029635.

    Article  CAS  PubMed  Google Scholar 

  16. Diao X, Wohlfarth A, Pang S, Scheidweiler KB, Huestis MA. High-resolution mass spectrometry for characterizing the metabolism of synthetic cannabinoid THJ-018 and its 5-fluoro analog THJ-2201 after incubation in human hepatocytes. Clin Chem Lab Med. 2015;62(1):1–13. https://doi.org/10.1373/clinchem.2015.243535.

    Article  CAS  Google Scholar 

  17. Watanabe S, Kuzhiumparambil U, Winiarski Z, Fu S. Biotransformation of synthetic cannabinoids JWH-018, JWH-073 and AM2201 by Cunninghamella elegans. Forensic Sci Int. 2016;261:33–42. https://doi.org/10.1016/j.forsciint.2015.12.023.

    Article  CAS  PubMed  Google Scholar 

  18. Diao X, Carlier J, Zhu M, Huestis MA. Metabolism of the new synthetic cannabinoid EG-018 in human hepatocytes by high-resolution mass spectrometry. Forensic Toxicol. 2018;36(2):304–12. https://doi.org/10.1007/s11419-018-0404-2.

    Article  CAS  Google Scholar 

  19. Mogler L, Franz F, Wilde M, Huppertz LM, Halter S, Angerer V, et al. Phase I metabolism of the carbazole derived synthetic cannabinoids EG-018, EG-2201 and MDMB-CHMCZCA and detection in human urine samples. Drug Test Anal. 2018;10(9):1417–29. https://doi.org/10.1002/dta.2398.

    Article  CAS  PubMed  Google Scholar 

  20. Möller I, Wintermeyer A, Bender K, Jübner M, Thomas A, Krug O, et al. Screening for the synthetic cannabinoid JWH-018 and its major metabolites in human doping controls. Drug Test Anal. 2011;3(9):609–20. https://doi.org/10.1002/dta.158.

    Article  CAS  PubMed  Google Scholar 

  21. Chimalakonda KC, Moran CL, Kennedy PD, Endres GW, Uzieblo A, Dobrowolski PJ, et al. Solid-phase extraction and quantitative measurement of omega and omega-1 metabolites of JWH-018 and JWH-073 in human urine. Anal Chem. 2011;83(16):6381–8. https://doi.org/10.1021/ac201377m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hutter M, Broecker S, Kneisel S, Auwärter V. Identification of the major urinary metabolites in man of seven synthetic cannabinoids of the aminoalkylindole type present as adulterants in ‘herbal mixtures’ using LC-MS/MS techniques. J Mass Spectrom. 2012;47(1):54–65. https://doi.org/10.1002/jms.2026.

    Article  CAS  PubMed  Google Scholar 

  23. Moonhee J, Wonkyung Y, Hyeyoung C, Heyejin C, Sooyeun L, Eunmi K, et al. Monitoring of urinary metabolites of JWH-018 and JWH-073 in legal cases. Forensic Sci Int. 2013;231(1-3):13–9. https://doi.org/10.1016/j.forsciint.2013.03.053.

    Article  CAS  Google Scholar 

  24. Hutter M, Moosmann B, Kneisel S, Auwärter V. Characteristics of the designer drug and synthetic cannabinoid receptor agonist AM-2201 regarding its chemistry and metabolism. J Mass Spectrom. 2013;48(7):885–94. https://doi.org/10.1002/jms.3229.

    Article  CAS  PubMed  Google Scholar 

  25. Wohlfarth A, Scheidweiler KB, Castaneto M, Gandhi AS, Desrosiers NA, Klette KL, et al. Urinary prevalence, metabolite detection rates, temporal patterns and evaluation of suitable LC-MS/MS targets to document synthetic cannabinoid intake in US military urine specimens. Clin Chem Lab Med. 2014;53(3):423–34. https://doi.org/10.1515/cclm-2014-0612.

    Article  CAS  Google Scholar 

  26. Moonhee J, Wonkyung Y, Shin I, Hyeyoung C, Heyejin C, Eunmi K. Determination of AM-2201 metabolites in urine and comparison with JWH-018 abuse. Int J Legal Med. 2014;128(2):285–94. https://doi.org/10.1007/s00414-013-0884-x.

    Article  Google Scholar 

  27. Scheidweiler KB, Huestis MA. Simultaneous quantification of 20 synthetic cannabinoids and 21 metabolites, and semi-quantification of 12 alkyl hydroxy metabolites in human urine by liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2014;1327:105–17. https://doi.org/10.1016/j.chroma.2013.12.067.

    Article  CAS  PubMed  Google Scholar 

  28. Scheidweiler KB, Jarvis MJ, Huestis MA. Nontargeted SWATH acquisition for identifying 47 synthetic cannabinoid metabolites in human urine by liquid chromatography-high-resolution tandem mass spectrometry. Anal Bioanal Chem. 2015;407(3):883–97. https://doi.org/10.1007/s00216-014-8118-8.

    Article  CAS  PubMed  Google Scholar 

  29. Asha S, Vidyavathi M. Cunninghamella – a microbial model for drug metabolism studies – a review. Biotechnol Adv. 2009;27(1):16–29. https://doi.org/10.1016/j.biotechadv.2008.07.005.

  30. Wang R-F, Cao W-W, Khan AA, Cerniglia CE. Cloning, sequencing, and expression in Escherichia coli of a cytochrome P450 gene from Cunninghamella elegans. FEMS Microbiol Lett. 2000;188(1):55–61. https://doi.org/10.1111/j.1574-6968.2000.tb09168.x.

    Article  CAS  PubMed  Google Scholar 

  31. Piska K, Zelaszczyk D, Jamrozik M, Kubowicz-Kwasnya P, Pekala E. Cunninghamella biotransformation - similarities to human drug metabolism and its relevance for the drug discovery process. Current Drug Metab. 2016;17(2):107–17. https://doi.org/10.2174/1389200216666151103115817.

    Article  CAS  Google Scholar 

  32. Zhang D, Yang Y, Leakey JEA, Cerniglia CE. Phase I and phase II enzymes produced by Cunninghamella elegans for the metabolism of xenobiotics. FEMS Microbiol Lett. 1996;138(2-3):221–6. https://doi.org/10.1111/j.1574-6968.1996.tb08161.x.

    Article  CAS  PubMed  Google Scholar 

  33. Fietzke M, Thomas A, Beike J, Rothschild MA, Thevis M, Mercer-Chalmers-Bender K. In vitro elucidation of the metabolic profile of the synthetic cannabinoid receptor agonists JWH-175 and JWH-176. Forensic Toxicol. 2016;34(2):353–62. https://doi.org/10.1007/s11419-016-0322-0.

    Article  CAS  Google Scholar 

  34. Gaunitz F, Thomas A, Fietzke M, Franz F, Auwärter V, Thevis M, et al. Phase I metabolic profiling of the synthetic cannabinoids THJ-018 and THJ-2201 in human urine in comparison to human liver microsome and cytochrome P450 isoenzyme incubation. Int J Legal Med. 2018. https://doi.org/10.1007/s00414-018-1964-8.

  35. Weber C, Pusch S, Schollmeyer D, Münster-Müller S, Pütz M, Opatz T. Characterization of the synthetic cannabinoid MDMB-CHMCZCA. Beilstein J Org Chem. 2016;12:2808–15. https://doi.org/10.3762/bjoc.12.279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pelkonen O, Mäenpää J, Taavitsainen P, Rautio A, Raunio H. Inhibition and induction of human cytochrome P450 (CYP) enzymes. Xenobiotica. 1998;28(12):1203–53. https://doi.org/10.1080/004982598238886.

    Article  CAS  PubMed  Google Scholar 

  37. Cartus AT. Thesis: Metabolismus der Phenylpropene Methyleugenol, (E)-Methylisoeugenol sowie alpha-, beta- und gamma-Asaron (in German). Metabolism of the phenylpropenes methyleugenol, (E)-methylisoeugenol as well as alpha-, beta- and gamma-asaron. Kaiserslautern: Technical University; 2014.

    Google Scholar 

  38. Chauret N, Gauthier A, Nicoll-Griffith DA. Effect of common organic solvents on in vitro cytochrome P450-mediated metabolic activities in human liver microsomes. Drug Metab Dispos. 1998;26(1):1–4.

    CAS  PubMed  Google Scholar 

  39. Easterbrook J, Lu C, Sakai Y, Li AP. Effects of organic solvents on the activities of cytochrome P450 isoforms, UDP-dependent glucuronyl transferase, and phenol sulfotransferase in human hepatocytes. Drug Metab Dispos. 2001;29(2):141–4.

    CAS  PubMed  Google Scholar 

  40. Watanabe K, Yamaori S, Funahashi T, Kimura T, Yamamoto I. Cytochrome P450 enzymes involved in the metabolism of tetrahydrocannabinols and cannabinol by human hepatic microsomes. Life Sci. 2007;80(15):1415–9. https://doi.org/10.1016/j.lfs.2006.12.032.

    Article  CAS  PubMed  Google Scholar 

  41. Jiang R, Yamaori S, Takeda S, Yamamoto I, Watanabe K. Identification of cytochrome P450 enzymes responsible for metabolism of cannabidiol by human liver microsomes. Life Sci. 2011;89(5-6):165–70. https://doi.org/10.1016/j.lfs.2011.05.018.

    Article  CAS  PubMed  Google Scholar 

  42. Holm NB, Nielsen LM, Linnet K. CYP3A4 mediates oxidative metabolism of the synthetic cannabinoid AKB-48. AAPS J. 2015;17(5):1237–45. https://doi.org/10.1208/s12248-015-9788-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Watanabe S, Kuzhiumparambil U, Nguyen MA, Cameron J, Fu S. Metabolic profile of synthetic cannabinoids 5F-PB-22, PB-22, XLR-11 and UR-144 by Cunninghamella elegans. AAPS J. 2017;19(4):1148–62. https://doi.org/10.1208/s12248-017-0078-4.

    Article  CAS  PubMed  Google Scholar 

  44. Hodgson E, Rose RL. The importance of cytochrome P450 2B6 in the human metabolism of environmental chemicals. Pharmac Ther. 2007;113(2):420–8. https://doi.org/10.1016/j.pharmthera.2006.10.002.

    Article  CAS  Google Scholar 

  45. Watanabe S, Kuzhiumparambil U, Fu S. Structural elucidation of metabolites of synthetic cannabinoid UR-144 by Cunninghamella elegans using nuclear magnetic resonance (NMR) spectroscopy. AAPS J. 2018;20(2):42. https://doi.org/10.1208/s12248-018-0209-6.

    Article  CAS  PubMed  Google Scholar 

  46. Gómez-Lechón MJ, Castell JV, Donato MT. An update on metabolism studies using human hepatocytes in primary culture. Expert Opin Drug Metab Toxicol. 2008;4(7):837–54. https://doi.org/10.1517/17425255.4.7.837.

    Article  PubMed  Google Scholar 

  47. Peters FT, Meyer MR. In vitro approaches to studying the metabolism of new psychoactive compounds. Drug Test Anal. 2011;3(7-8):483–95. https://doi.org/10.1002/dta.295.

    Article  CAS  PubMed  Google Scholar 

  48. Diao X, Huestis MA. Approaches, challenges, and advances in metabolism of new synthetic cannabinoids and identification of optimal urinary marker metabolites. Clin Pharmacol Ther. 2017;101(2):239–53. https://doi.org/10.1002/cpt.534.

    Article  CAS  PubMed  Google Scholar 

  49. Andersson TB, Sjöberg H, Hoffmann K-J, Boobis AR, Watts P, Edwards RJ, et al. An assessment of human liver-derived in vitro systems to predict the in vivo metabolism and clearance of almokalant. Drug Metab Dispos. 2001;29(5):712–20.

    CAS  PubMed  Google Scholar 

  50. Salonen JS, Nyman L, Boobis AR, Edwards RJ, Watts P, Lake BG, et al. Comparative studies on the cytochrome P450-associated metabolism and interaction potential of selegiline between human liver-derived in vitro systems. Drug Metab Dispos. 2003;31(9):1093–102. https://doi.org/10.1124/dmd.31.9.1093.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Very special thanks are directed to June Mercer-Chalmers-Bender for English language editing and idea sharing.

Funding

This work was funded by the German Federal Ministry for Economic Affairs and Energy and the Central innovation program for medium-sized companies, respectively (grant number KF2429613MD3). Last but not least, thanks are directed to the German Union against Alcohol and Drugs in Road Transport (Bund gegen Alkohol und Drogen im Straßenverkehr; BADS) for additional financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Mercer-Chalmers-Bender.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants or animals

This article does not contain any studies with human participants or animals performed by any of the authors. The urine samples were collected during routine screening for metabolites of synthetic cannabinoids between January 2016 and February 2018 at the Institute of Forensic Medicine in Freiburg. According to German law, ethical approval is not required when samples are gathered for the purposes of routine screening. Analysis of the urine samples was carried out with the consent of the respective test persons. Data have been anonymized and are not traceable to the sample donors. All procedures performed were in accordance and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1.15 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaunitz, F., Dahm, P., Mogler, L. et al. In vitro metabolic profiling of synthetic cannabinoids by pooled human liver microsomes, cytochrome P450 isoenzymes, and Cunninghamella elegans and their detection in urine samples. Anal Bioanal Chem 411, 3561–3579 (2019). https://doi.org/10.1007/s00216-019-01837-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01837-8

Keywords

Navigation