Skip to main content
Erschienen in: Experimental Brain Research 3/2004

01.02.2004 | Research Article

Initiating extension of the lower limbs in subjects with complete spinal cord injury by epidural lumbar cord stimulation

verfasst von: B. Jilge, K. Minassian, F. Rattay, M. M. Pinter, F. Gerstenbrand, H. Binder, M. R. Dimitrijevic

Erschienen in: Experimental Brain Research | Ausgabe 3/2004

Einloggen, um Zugang zu erhalten

Abstract

We provide evidence that the human spinal cord is able to respond to external afferent input and to generate a sustained extension of the lower extremities when isolated from brain control. The present study demonstrates that sustained, nonpatterned electrical stimulation of the lumbosacral cord—applied at a frequency in the range of 5–15 Hz and a strength above the thresholds for twitches in the thigh and leg muscles—can initiate and retain lower-limb extension in paraplegic subjects with a long history of complete spinal cord injury. We hypothesize that the induced extension is due to tonic input applied by the epidural stimulation to primary sensory afferents. The induced volleys elicit muscle twitches (posterior root muscle-reflex responses) at short and constant latency times and coactivate the configuration of the lumbosacral interneuronal network, presumably via collaterals of the primary sensory neurons and their connectivity with this network. We speculate that the volleys induced externally to the lumbosacral network at a frequency of 5–15 Hz initiate and retain an “extension pattern generator” organization. Once established, this organization would recruit a larger population of motor units in the hip and ankle extensor muscles as compared to the flexors, resulting in an extension movement of the lower limbs. In the electromyograms of the lower-limb muscle groups, such activity is reflected as a characteristic spatiotemporal pattern of compound motor-unit potentials.
Literatur
Zurück zum Zitat Barolat G, Singh-Sahni K, Staas WE et al. (1995) Epidural spinal cord stimulation in the management of spasms in spinal cord injury. A prospective study. Stereotact Funct Neurosurg 64:153–164PubMed Barolat G, Singh-Sahni K, Staas WE et al. (1995) Epidural spinal cord stimulation in the management of spasms in spinal cord injury. A prospective study. Stereotact Funct Neurosurg 64:153–164PubMed
Zurück zum Zitat Beric A (1988) Stability of lumbosacral somatosensory evoked potentials in a long-term follow-up. Muscle Nerve 11:621–626PubMed Beric A (1988) Stability of lumbosacral somatosensory evoked potentials in a long-term follow-up. Muscle Nerve 11:621–626PubMed
Zurück zum Zitat Bizzi E, Giszter SF, Loeb E, Mussa-Ivaldi FA, Saltiel P (1995) Modular organization of motor behavior in the frog’s spinal cord. Trends Neurosci 18:442–446CrossRefPubMed Bizzi E, Giszter SF, Loeb E, Mussa-Ivaldi FA, Saltiel P (1995) Modular organization of motor behavior in the frog’s spinal cord. Trends Neurosci 18:442–446CrossRefPubMed
Zurück zum Zitat Brooke JD, McIlroy WE (1985) Locomotor limb synergism through short latency afferent links. Electroencephalogr Clin Neurophysiol 60:39–45CrossRefPubMed Brooke JD, McIlroy WE (1985) Locomotor limb synergism through short latency afferent links. Electroencephalogr Clin Neurophysiol 60:39–45CrossRefPubMed
Zurück zum Zitat Brown TG (1911) The intrinsic factors in the act of progression in the mammal. Proc R Soc B 84:308–319 Brown TG (1911) The intrinsic factors in the act of progression in the mammal. Proc R Soc B 84:308–319
Zurück zum Zitat Coburn B (1985) A theoretical study of epidural electrical stimulation of the spinal cord. II. Effects on long myelinated fibers. IEEE Trans Biomed Eng 32:978–986PubMed Coburn B (1985) A theoretical study of epidural electrical stimulation of the spinal cord. II. Effects on long myelinated fibers. IEEE Trans Biomed Eng 32:978–986PubMed
Zurück zum Zitat De Leon RD, Hodgson JA, Roy RR, Edgerton VR (1998) Full weight bearing hind limb standing following stand training in the adult spinal cat. J Neurophysiol 80:83–91PubMed De Leon RD, Hodgson JA, Roy RR, Edgerton VR (1998) Full weight bearing hind limb standing following stand training in the adult spinal cat. J Neurophysiol 80:83–91PubMed
Zurück zum Zitat Dietz V, Wirz M, Colombo G, Curt A (1997) Locomotor capacity and recovery of spinal cord function in paraplegic patients: a clinical and electrophysiological evaluation. Electroencephalogr Clin Neurophysiol 109:140–153CrossRef Dietz V, Wirz M, Colombo G, Curt A (1997) Locomotor capacity and recovery of spinal cord function in paraplegic patients: a clinical and electrophysiological evaluation. Electroencephalogr Clin Neurophysiol 109:140–153CrossRef
Zurück zum Zitat Dietz V, Muller R, Colombo G (2002) Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 125:2626–2634CrossRefPubMed Dietz V, Muller R, Colombo G (2002) Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 125:2626–2634CrossRefPubMed
Zurück zum Zitat Dimitrijevic MR (1994) Motor control in chronic spinal cord injury patients. Scand J Rehabil Med (Suppl) 30:53–62 Dimitrijevic MR (1994) Motor control in chronic spinal cord injury patients. Scand J Rehabil Med (Suppl) 30:53–62
Zurück zum Zitat Dimitrijevic MR (1998) Chronic spinal cord stimulation for spasticity. In: Gindelberg PL, Tasker RR (eds) Textbook for stereotactic and functional neurosurgery. McGraw-Hill, New York, pp 1267–1273 Dimitrijevic MR (1998) Chronic spinal cord stimulation for spasticity. In: Gindelberg PL, Tasker RR (eds) Textbook for stereotactic and functional neurosurgery. McGraw-Hill, New York, pp 1267–1273
Zurück zum Zitat Dimitrijevic MR (2001) What does the human brain tell to the spinal cord to generate and control standing and walking? World Congress on Neuroinformatics, Vienna 2001. Abstracts 53–54. ISBN 3–901608–20–6 Dimitrijevic MR (2001) What does the human brain tell to the spinal cord to generate and control standing and walking? World Congress on Neuroinformatics, Vienna 2001. Abstracts 53–54. ISBN 3–901608–20–6
Zurück zum Zitat Dimitrijevic MR, Nathan PW (1967) Studies of spasticity in man. 1. Some features of spasticity. Brain 90:1–30PubMed Dimitrijevic MR, Nathan PW (1967) Studies of spasticity in man. 1. Some features of spasticity. Brain 90:1–30PubMed
Zurück zum Zitat Dimitrijevic MR, Faganel J, Gregoric M, Nathan M, Trontelj JK (1972) Habituation: effects of regular and stochastic stimulation. J Neurol Neurosurg Psychiatry 35:234–242PubMed Dimitrijevic MR, Faganel J, Gregoric M, Nathan M, Trontelj JK (1972) Habituation: effects of regular and stochastic stimulation. J Neurol Neurosurg Psychiatry 35:234–242PubMed
Zurück zum Zitat Dimitrijevic MR, Faganel J, Sharkey PC, Sherwood AM (1980) Study of sensation and muscle twitch responses to spinal cord stimulation. Int Rehabil Med 2:76–81PubMed Dimitrijevic MR, Faganel J, Sharkey PC, Sherwood AM (1980) Study of sensation and muscle twitch responses to spinal cord stimulation. Int Rehabil Med 2:76–81PubMed
Zurück zum Zitat Dimitrijevic MR, Prevec TS, Sherwood AM (1983) Somatosensory perception and cortical evoked potentials in established paraplegia. J Neurol Sci 60:253–265CrossRefPubMed Dimitrijevic MR, Prevec TS, Sherwood AM (1983) Somatosensory perception and cortical evoked potentials in established paraplegia. J Neurol Sci 60:253–265CrossRefPubMed
Zurück zum Zitat Dimitrijevic MR, Gerasimenko Y, Pinter MM (1998a) Effect of reduced afferent input on lumbar CPG in spinal cord injury subjects. Soc Neurosci Abstr 24:654.23 Dimitrijevic MR, Gerasimenko Y, Pinter MM (1998a) Effect of reduced afferent input on lumbar CPG in spinal cord injury subjects. Soc Neurosci Abstr 24:654.23
Zurück zum Zitat Dimitrijevic MR, Gerasimenko Y, Pinter MM (1998b) Evidence for a spinal central pattern generator in humans. In: Kien O, Harris-Warrick RM, Jordan L, Hultborn H, Kudo N (eds) Neuronal mechanism for generating locomotor activity. Ann NY Acad Sci 860:360–376PubMed Dimitrijevic MR, Gerasimenko Y, Pinter MM (1998b) Evidence for a spinal central pattern generator in humans. In: Kien O, Harris-Warrick RM, Jordan L, Hultborn H, Kudo N (eds) Neuronal mechanism for generating locomotor activity. Ann NY Acad Sci 860:360–376PubMed
Zurück zum Zitat Dimitrijevic MR, Minassian K, Murg M et al. (2001) Study of locomotor capabilities induced by spinal cord stimulation (SCS) of the human lumbar cord isolated from the brain control by post traumatic spinal cord injury. Soc Neurosci 27:935.6 Dimitrijevic MR, Minassian K, Murg M et al. (2001) Study of locomotor capabilities induced by spinal cord stimulation (SCS) of the human lumbar cord isolated from the brain control by post traumatic spinal cord injury. Soc Neurosci 27:935.6
Zurück zum Zitat Dobkin BH, Harkema S, Requejo P, Edgerton VR (1995) Modulation of locomotor-like EMG activity in subjects with complete and incomplete spinal cord injury. J Neurol Rehabil 9(4):183–190PubMed Dobkin BH, Harkema S, Requejo P, Edgerton VR (1995) Modulation of locomotor-like EMG activity in subjects with complete and incomplete spinal cord injury. J Neurol Rehabil 9(4):183–190PubMed
Zurück zum Zitat Gerasimenko Y, McKay B, Sherwood A, Dimitrijevic MR (1996) Stepping movements in paraplegic patients induced by spinal cord stimulation. Soc Neurosci Abstr 22:1372 Gerasimenko Y, McKay B, Sherwood A, Dimitrijevic MR (1996) Stepping movements in paraplegic patients induced by spinal cord stimulation. Soc Neurosci Abstr 22:1372
Zurück zum Zitat Giszter SF, Mussa-Ivaldi FA, Bizzi E (1993) Convergent force fields organized in the frog’s spinal cord. J Neurosci 13(2):467–491PubMed Giszter SF, Mussa-Ivaldi FA, Bizzi E (1993) Convergent force fields organized in the frog’s spinal cord. J Neurosci 13(2):467–491PubMed
Zurück zum Zitat Grillner S, Zangger P (1979) On the central generation of locomotion in the low spinal cat. Exp Brain Res 34:241–261PubMed Grillner S, Zangger P (1979) On the central generation of locomotion in the low spinal cat. Exp Brain Res 34:241–261PubMed
Zurück zum Zitat Gurfinkel VS, Levik YuS, Kazennikov OV, Selionov VA (1998) Locomotor-like movements evoked by leg muscle vibration in humans. Eur J Neurosci 10:1608–1612CrossRefPubMed Gurfinkel VS, Levik YuS, Kazennikov OV, Selionov VA (1998) Locomotor-like movements evoked by leg muscle vibration in humans. Eur J Neurosci 10:1608–1612CrossRefPubMed
Zurück zum Zitat Guru K, Mailis A, Ashby P, Vanderlinden G (1987) Postsynaptic potentials in motoneurons caused by spinal cord stimulation in humans. Electroencephalogr Clin Neurophysiol 66:275–280 Guru K, Mailis A, Ashby P, Vanderlinden G (1987) Postsynaptic potentials in motoneurons caused by spinal cord stimulation in humans. Electroencephalogr Clin Neurophysiol 66:275–280
Zurück zum Zitat Harkema SJ (2001) Neural plasticity after human spinal cord injury: application of locomotor training to the rehabilitation of walking. Prog Clin Neurosci 7(5):455–468 Harkema SJ (2001) Neural plasticity after human spinal cord injury: application of locomotor training to the rehabilitation of walking. Prog Clin Neurosci 7(5):455–468
Zurück zum Zitat Harkema SJ, Hurley SL, Patel UK et al. (1997) Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol 77:797–811PubMed Harkema SJ, Hurley SL, Patel UK et al. (1997) Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol 77:797–811PubMed
Zurück zum Zitat He J, Barolat G, Holsheimer J, Struijk JJ (1994) Perception treshold and electrode position for spinal cord stimulation. Pain 59:55–63 He J, Barolat G, Holsheimer J, Struijk JJ (1994) Perception treshold and electrode position for spinal cord stimulation. Pain 59:55–63
Zurück zum Zitat Hultborn H (2001) State-dependent modulation of sensory feedback. J Physiol 533.1:5–13 Hultborn H (2001) State-dependent modulation of sensory feedback. J Physiol 533.1:5–13
Zurück zum Zitat Hunter JP, Ashby P (1994) Segmental effects of epidural spinal cord stimulation in humans. J Physiol 474:407–419 Hunter JP, Ashby P (1994) Segmental effects of epidural spinal cord stimulation in humans. J Physiol 474:407–419
Zurück zum Zitat Iwahara T, Atsuta Y, Garcia-Rill E, Skinner RD (1991) Spinal cord stimulation induced locomotion in the adult cat. Brain Res Bull 28:99–105CrossRef Iwahara T, Atsuta Y, Garcia-Rill E, Skinner RD (1991) Spinal cord stimulation induced locomotion in the adult cat. Brain Res Bull 28:99–105CrossRef
Zurück zum Zitat Jankowska E (2001) Spinal interneuronal system: identification, multifunctional character and reconfigurations in mammals. J Physiol (Lond) 533(1):31–40 Jankowska E (2001) Spinal interneuronal system: identification, multifunctional character and reconfigurations in mammals. J Physiol (Lond) 533(1):31–40
Zurück zum Zitat Jilge B, Minassian K, Dimitrijevic MR (2001) Electrical stimulation of the human lumbar cord can elicit standing parallel extension of paralyzed lower limbs after spinal cord injury. World Congress on Neuroinformatics, Vienna 2001. Abstracts 63–64 (ISBN 3–901608–20–6) Jilge B, Minassian K, Dimitrijevic MR (2001) Electrical stimulation of the human lumbar cord can elicit standing parallel extension of paralyzed lower limbs after spinal cord injury. World Congress on Neuroinformatics, Vienna 2001. Abstracts 63–64 (ISBN 3–901608–20–6)
Zurück zum Zitat Jilge B, Minassian K, Rattay F, Dimitrijevic MR (2002) Tonic and rhythmical motor-unit activity of the cord induced by epidural stimulation can alter posterior roots muscle reflex responses. Proc IFESS 2002 Conference, Ljubljana, Slovenia 164–166 Jilge B, Minassian K, Rattay F, Dimitrijevic MR (2002) Tonic and rhythmical motor-unit activity of the cord induced by epidural stimulation can alter posterior roots muscle reflex responses. Proc IFESS 2002 Conference, Ljubljana, Slovenia 164–166
Zurück zum Zitat Jordan LM, Pratt CA, Menzies JE (1979) Locomotion evoked by brain stem stimulation: occurrence without phasic segmental afferent input. Brain Res 177:204–207PubMed Jordan LM, Pratt CA, Menzies JE (1979) Locomotion evoked by brain stem stimulation: occurrence without phasic segmental afferent input. Brain Res 177:204–207PubMed
Zurück zum Zitat Kameyama T et al. (1996) Morphologic features of the normal human cadaveric spinal cord. Spine 21:1285–1290CrossRefPubMed Kameyama T et al. (1996) Morphologic features of the normal human cadaveric spinal cord. Spine 21:1285–1290CrossRefPubMed
Zurück zum Zitat Kazennikov OV, Shik ML, Yakovleva GV (1983) Stepping elicited by stimulation of the dorsolateral funiculus in the cat spinal cord. Bull Exp Biol Med 96(8):8–10 Kazennikov OV, Shik ML, Yakovleva GV (1983) Stepping elicited by stimulation of the dorsolateral funiculus in the cat spinal cord. Bull Exp Biol Med 96(8):8–10
Zurück zum Zitat Kuhn R (1950) Functional capacity of the isolated human spinal cord. Brain 1:1–51 Kuhn R (1950) Functional capacity of the isolated human spinal cord. Brain 1:1–51
Zurück zum Zitat Lang J, Geisel U (1983) Lumbosacral part of the dural sac and the topography of its contents. Morphol Med 3:27–46 (in German)PubMed Lang J, Geisel U (1983) Lumbosacral part of the dural sac and the topography of its contents. Morphol Med 3:27–46 (in German)PubMed
Zurück zum Zitat Lehmkuhl D, Dimitrijevic MR, Renoul E (1984) Electrophysiological characteristics of lumbosacral evoked potentials in subjects with established spinal cord injury. Electroencephalogr Clin Neurophysiol 59:142–155CrossRefPubMed Lehmkuhl D, Dimitrijevic MR, Renoul E (1984) Electrophysiological characteristics of lumbosacral evoked potentials in subjects with established spinal cord injury. Electroencephalogr Clin Neurophysiol 59:142–155CrossRefPubMed
Zurück zum Zitat Maccabee PJ, Lipitz ME, Desudchit T et al. (1996) A new method using neuromagnetic stimulation to measure conduction time within the cauda equina. Electroencephalogr Clin Neurophysiol 101:153–166CrossRefPubMed Maccabee PJ, Lipitz ME, Desudchit T et al. (1996) A new method using neuromagnetic stimulation to measure conduction time within the cauda equina. Electroencephalogr Clin Neurophysiol 101:153–166CrossRefPubMed
Zurück zum Zitat Macpherson JM, Deliagina TG, Orlovsky GN (1999) Control of body orientation and equilibrium in vertebrates. In: Stein PSG, Grillner S, Selverston AI, Stuart DG (eds) Neurons, networks and motor behavior. MIT Press, Cambridge, MA, pp 257–267 Macpherson JM, Deliagina TG, Orlovsky GN (1999) Control of body orientation and equilibrium in vertebrates. In: Stein PSG, Grillner S, Selverston AI, Stuart DG (eds) Neurons, networks and motor behavior. MIT Press, Cambridge, MA, pp 257–267
Zurück zum Zitat Minassian K, Pinter MM, Murg M et al. (2001a) Effective spinal cord stimulation (SCS) train for evoking stepping locomotor movement of paralyzed human lower limbs due to SCI elicits a late response additionally to the early monosynaptic response. Soc Neurosci Abstr 27:935.12 Minassian K, Pinter MM, Murg M et al. (2001a) Effective spinal cord stimulation (SCS) train for evoking stepping locomotor movement of paralyzed human lower limbs due to SCI elicits a late response additionally to the early monosynaptic response. Soc Neurosci Abstr 27:935.12
Zurück zum Zitat Minassian K, Rattay F, Dimitrijevic MR (2001b) Features of the reflex responses of the human lumbar cord isolated from the brain but during externally controlled locomotor activity. World Congress on Neuroinformatics, Vienna 2001. Abstracts 55–56 (ISBN 3–901608–20–6) Minassian K, Rattay F, Dimitrijevic MR (2001b) Features of the reflex responses of the human lumbar cord isolated from the brain but during externally controlled locomotor activity. World Congress on Neuroinformatics, Vienna 2001. Abstracts 55–56 (ISBN 3–901608–20–6)
Zurück zum Zitat Minassian K, Rattay F, Dimitrijevic MR (2001c) A computer simulation and electrophysiological methods to identify the primary stimulated spinal cord structures with epidural electrodes. World Congress on Neuroinformatics, Vienna 2001. Abstracts 64–65 (ISBN 3–901608–20–6) Minassian K, Rattay F, Dimitrijevic MR (2001c) A computer simulation and electrophysiological methods to identify the primary stimulated spinal cord structures with epidural electrodes. World Congress on Neuroinformatics, Vienna 2001. Abstracts 64–65 (ISBN 3–901608–20–6)
Zurück zum Zitat Minassian K, Jilge B, Rattay F et al. (2002) Effective spinal cord stimulation (SCS) for evoking stepping movement of paralyzed human lower limbs: study of posterior root muscle reflex responses. Proc IFESS 2002 Conference, Ljubljana, Slovenia 167–169 Minassian K, Jilge B, Rattay F et al. (2002) Effective spinal cord stimulation (SCS) for evoking stepping movement of paralyzed human lower limbs: study of posterior root muscle reflex responses. Proc IFESS 2002 Conference, Ljubljana, Slovenia 167–169
Zurück zum Zitat Mori S (1987) Integration of posture and locomotion in acute decerebrate cats and in awake, freely moving cats. Prog Neurobiol 28:161–195PubMed Mori S (1987) Integration of posture and locomotion in acute decerebrate cats and in awake, freely moving cats. Prog Neurobiol 28:161–195PubMed
Zurück zum Zitat Mori S, Kawahara K, Sakamoto T, Aoki M, Tomiyama T (1982) Setting and resetting of level of postural muscle tone in decerebrate cat by stimulation of brain stem. J Neurophysiol 48(3):737–748PubMed Mori S, Kawahara K, Sakamoto T, Aoki M, Tomiyama T (1982) Setting and resetting of level of postural muscle tone in decerebrate cat by stimulation of brain stem. J Neurophysiol 48(3):737–748PubMed
Zurück zum Zitat Murg M, Binder H, Dimitrijevic MR (2000) Epidural electrical stimulation of posterior structures of the human lumbar spinal cord. 1. Muscle twitches—a functional method to define the site of stimulation. Spinal Cord 38:394–402CrossRefPubMed Murg M, Binder H, Dimitrijevic MR (2000) Epidural electrical stimulation of posterior structures of the human lumbar spinal cord. 1. Muscle twitches—a functional method to define the site of stimulation. Spinal Cord 38:394–402CrossRefPubMed
Zurück zum Zitat Mushahwar VK, Collins DF, Prochazka A (2000) Spinal cord microstimulation generates functional limb movements in chronically implanted cats. Exp Neurol 163(2):422–429CrossRefPubMed Mushahwar VK, Collins DF, Prochazka A (2000) Spinal cord microstimulation generates functional limb movements in chronically implanted cats. Exp Neurol 163(2):422–429CrossRefPubMed
Zurück zum Zitat Mushahwar VK, Gillard DM, Gauthier MJA, Prochazka A (2002) Intraspinal microstimulation generates locomotor-like and feedback-controlled movements. IEEE Trans Rehab Eng 10(1):68–81CrossRef Mushahwar VK, Gillard DM, Gauthier MJA, Prochazka A (2002) Intraspinal microstimulation generates locomotor-like and feedback-controlled movements. IEEE Trans Rehab Eng 10(1):68–81CrossRef
Zurück zum Zitat Pearson KG, Collins DF (1993) Reversal of the influence of group Ib afferents from plantaris on activity in medial gastrocnemius muscle during locomotor activity. J Neurophysiol 70:1009–1017PubMed Pearson KG, Collins DF (1993) Reversal of the influence of group Ib afferents from plantaris on activity in medial gastrocnemius muscle during locomotor activity. J Neurophysiol 70:1009–1017PubMed
Zurück zum Zitat Pinter MM, Dimitrijevic MR, Dimitrijevic MM (1998) Effect of motor task on externally induced stepping movement in spinal cord subjects. Soc Neurosci Abstr 24:831.1 Pinter MM, Dimitrijevic MR, Dimitrijevic MM (1998) Effect of motor task on externally induced stepping movement in spinal cord subjects. Soc Neurosci Abstr 24:831.1
Zurück zum Zitat Pinter MM, Gerstenbrand F, Dimitrijevic MR (2000) Epidural electrical stimulation of posterior structures of the human lumbosacral cord. 3. Control of spasticity. Spinal Cord 38:524–531CrossRefPubMed Pinter MM, Gerstenbrand F, Dimitrijevic MR (2000) Epidural electrical stimulation of posterior structures of the human lumbosacral cord. 3. Control of spasticity. Spinal Cord 38:524–531CrossRefPubMed
Zurück zum Zitat Pratt CA, Fung J, Macpherson JM (1994) Stance control in the chronic spinal cat. J Neurophysiol 71:1981–1985PubMed Pratt CA, Fung J, Macpherson JM (1994) Stance control in the chronic spinal cat. J Neurophysiol 71:1981–1985PubMed
Zurück zum Zitat Rattay F, Minassian K, Dimitrijevic MR (2000) Epidural electrical stimulation of posterior structures of the human lumbosacral cord. 2. Quantitative analysis by computer modeling. Spinal Cord 38:473–489CrossRefPubMed Rattay F, Minassian K, Dimitrijevic MR (2000) Epidural electrical stimulation of posterior structures of the human lumbosacral cord. 2. Quantitative analysis by computer modeling. Spinal Cord 38:473–489CrossRefPubMed
Zurück zum Zitat Richardson RR, McLone DG (1978) Percutaneous epidural neurostimulation for paraplegic spasticity. Surg Neurol 9:153–155PubMed Richardson RR, McLone DG (1978) Percutaneous epidural neurostimulation for paraplegic spasticity. Surg Neurol 9:153–155PubMed
Zurück zum Zitat Riddoch G (1917) The reflex functions of the completely divided spinal cord in man compared with those associated with less severe lesions. Brain 40:264–402 Riddoch G (1917) The reflex functions of the completely divided spinal cord in man compared with those associated with less severe lesions. Brain 40:264–402
Zurück zum Zitat Roaf HE, Sherrington CS (1910) Further remarks on the spinal mammalian preparation. Q J Physiol 3:209–211 Roaf HE, Sherrington CS (1910) Further remarks on the spinal mammalian preparation. Q J Physiol 3:209–211
Zurück zum Zitat Rosenfeld JE, McKay WB, Halter JA, Pollo F, Dimitrijevic MR (1995) Evidence of a pattern generator in paralyzed subjects with spinal cord injury during spinal cord stimulation. Soc Neurosci Abstr 21:688 Rosenfeld JE, McKay WB, Halter JA, Pollo F, Dimitrijevic MR (1995) Evidence of a pattern generator in paralyzed subjects with spinal cord injury during spinal cord stimulation. Soc Neurosci Abstr 21:688
Zurück zum Zitat Sherwood AM, McKay WB, Dimitrijevic MR (1996) Motor control after spinal cord injury: assessment using surface EMG. Muscle Nerve 19:966–979CrossRefPubMed Sherwood AM, McKay WB, Dimitrijevic MR (1996) Motor control after spinal cord injury: assessment using surface EMG. Muscle Nerve 19:966–979CrossRefPubMed
Zurück zum Zitat Shik ML (1997) Recognizing propriospinal and reticulospinal systems of initiation of stepping. Mot Control 1:310–313 Shik ML (1997) Recognizing propriospinal and reticulospinal systems of initiation of stepping. Mot Control 1:310–313
Zurück zum Zitat Shik ML, Orlovsky GN (1976) Neurophysiology of locomotor automatism. Physiol Rev 56:465–501PubMed Shik ML, Orlovsky GN (1976) Neurophysiology of locomotor automatism. Physiol Rev 56:465–501PubMed
Zurück zum Zitat Shik ML, Severin FV, Orlovsky GN (1966) Control of walking and running by means of electrical stimulation of the mid-brain. Biophysics 11:756–765 Shik ML, Severin FV, Orlovsky GN (1966) Control of walking and running by means of electrical stimulation of the mid-brain. Biophysics 11:756–765
Zurück zum Zitat Struijk JJ, Holsheimer J, Boom HB (1993) Excitation of dorsal root fibers in spinal cord stimulation: a theoretical study. IEEE Trans Biomed Eng 40:632–639CrossRefPubMed Struijk JJ, Holsheimer J, Boom HB (1993) Excitation of dorsal root fibers in spinal cord stimulation: a theoretical study. IEEE Trans Biomed Eng 40:632–639CrossRefPubMed
Zurück zum Zitat Tresch MC, Bizzi E (1999) Responses to spinal microstimulation in the chronically spinalized rat and their relationship to spinal systems activated by low threshold cutaneous stimulation. Exp Brain Res 129(3):401–416PubMed Tresch MC, Bizzi E (1999) Responses to spinal microstimulation in the chronically spinalized rat and their relationship to spinal systems activated by low threshold cutaneous stimulation. Exp Brain Res 129(3):401–416PubMed
Zurück zum Zitat Troni W, Bianco C, Moja MC, Dotta M (1996) Improved methodology for lumbosacral nerve root stimulation. Muscle Nerve 19:595–604CrossRefPubMed Troni W, Bianco C, Moja MC, Dotta M (1996) Improved methodology for lumbosacral nerve root stimulation. Muscle Nerve 19:595–604CrossRefPubMed
Zurück zum Zitat Walsh FM (1919) On the genesis and physiological significance of spasticity and the disorders of motor innervation with a consideration of the functional relationship to the pyramidal tract. Brain 42:1–28 Walsh FM (1919) On the genesis and physiological significance of spasticity and the disorders of motor innervation with a consideration of the functional relationship to the pyramidal tract. Brain 42:1–28
Metadaten
Titel
Initiating extension of the lower limbs in subjects with complete spinal cord injury by epidural lumbar cord stimulation
verfasst von
B. Jilge
K. Minassian
F. Rattay
M. M. Pinter
F. Gerstenbrand
H. Binder
M. R. Dimitrijevic
Publikationsdatum
01.02.2004
Erschienen in
Experimental Brain Research / Ausgabe 3/2004
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-003-1666-3

Weitere Artikel der Ausgabe 3/2004

Experimental Brain Research 3/2004 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.