Skip to main content
Erschienen in: Experimental Brain Research 4/2005

01.12.2005 | Research Article

Chromatic sensitivity of neurones in area MT of the anaesthetised macaque monkey compared to human motion perception

verfasst von: Igor Riečanský, Alexander Thiele, Claudia Distler, Klaus-Peter Hoffmann

Erschienen in: Experimental Brain Research | Ausgabe 4/2005

Einloggen, um Zugang zu erhalten

Abstract

We recorded activity from neurones in cortical motion-processing areas, middle temporal area (MT) and middle posterior superior temporal sulcus (MST), of anaesthetised and paralysed macaque monkeys in response to moving sinewave gratings modulated in luminance and chrominance. The activity of MT and MST neurones was highly dependent on luminance contrast. In three of four animals isoluminant chromatic modulations failed to activate MT/MST neurones significantly. At low luminance contrast a systematic dependence on chromaticity was revealed, attributable mostly to residual activity of the magnocellular pathway. Additionally, we found indications for a weak S-cone input, but rod intrusion could also have made a contribution. In contrast to the activity of MT and MST neurones, speed judgments and onset amplitude of evoked optokinetic eye movements in human subjects confronted with equivalent visual stimuli were largely independent of luminance modulation. Motion of every grating (including isoluminant) was readily visible for all but one observer. Similarity with the activity of MT/MST cells was found only for motion-nulling equivalent luminance contrast judgments at isoluminance. Our results suggest that areas MT and MST may not be involved in the processing of chromatic motion, but effects of central anaesthesia and/or the existence of intra- and inter-species differences must also be considered.
Literatur
Zurück zum Zitat Agonie C, Gorea A (1993) Equivalent luminance contrast of red-green drifting stimuli: dependency on luminance-color interactions and on the psychophysical task. J Opt Soc Am A 10:1341–1352PubMed Agonie C, Gorea A (1993) Equivalent luminance contrast of red-green drifting stimuli: dependency on luminance-color interactions and on the psychophysical task. J Opt Soc Am A 10:1341–1352PubMed
Zurück zum Zitat Albright TD (1992) Form-cue invariant motion processing in primate visual cortex. Science 255:1141–1143PubMed Albright TD (1992) Form-cue invariant motion processing in primate visual cortex. Science 255:1141–1143PubMed
Zurück zum Zitat Albright TD, Stoner GR (1995) Visual motion perception. Proc Natl Acad Sci USA 92:2433–2440PubMed Albright TD, Stoner GR (1995) Visual motion perception. Proc Natl Acad Sci USA 92:2433–2440PubMed
Zurück zum Zitat Blaser E, Sperling G, Lu ZL (1999) Measuring the amplification of attention. Proc Natl Acad Sci USA 96:11681–11686CrossRefPubMed Blaser E, Sperling G, Lu ZL (1999) Measuring the amplification of attention. Proc Natl Acad Sci USA 96:11681–11686CrossRefPubMed
Zurück zum Zitat Born RT, Groh JM, Zhao R, Lukasewycz SJ (2000) Segregation of object and background motion in visual area MT: effects of microstimulation on eye movements. Neuron 26:725–734CrossRefPubMed Born RT, Groh JM, Zhao R, Lukasewycz SJ (2000) Segregation of object and background motion in visual area MT: effects of microstimulation on eye movements. Neuron 26:725–734CrossRefPubMed
Zurück zum Zitat Britten KH, Shadlen MN, Newsome WT, Movshon JA (1992) The analysis of visual motion: a comparison of neuronal and psychophysical performance. J Neurosci 12:4745–4765PubMed Britten KH, Shadlen MN, Newsome WT, Movshon JA (1992) The analysis of visual motion: a comparison of neuronal and psychophysical performance. J Neurosci 12:4745–4765PubMed
Zurück zum Zitat Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA (1996) A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis Neurosci 13:87–100PubMed Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA (1996) A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis Neurosci 13:87–100PubMed
Zurück zum Zitat Brückner G, Seeger G, Brauer K, Härtig W, Katza J, Bigl V (1994) Cortical areas are revealed by distribution patterns of proteoglycan components and parvalbumin in the Mongolian gerbil and rat. Brain Res 658:67–86PubMedCrossRef Brückner G, Seeger G, Brauer K, Härtig W, Katza J, Bigl V (1994) Cortical areas are revealed by distribution patterns of proteoglycan components and parvalbumin in the Mongolian gerbil and rat. Brain Res 658:67–86PubMedCrossRef
Zurück zum Zitat Burkhalter A, Van Essen DC (1986) Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey. J Neurosci 6:2327–2351PubMed Burkhalter A, Van Essen DC (1986) Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey. J Neurosci 6:2327–2351PubMed
Zurück zum Zitat Burr DC, Fiorentini A, Morrone C (1998) Reaction time to motion onset of luminance and chromatic gratings is determined by perceived speed. Vision Res 38:3681–3690CrossRefPubMed Burr DC, Fiorentini A, Morrone C (1998) Reaction time to motion onset of luminance and chromatic gratings is determined by perceived speed. Vision Res 38:3681–3690CrossRefPubMed
Zurück zum Zitat von Campenhausen M, Kirschfeld K (1999) Visual attention modifies spectral sensitivity of nystagmic eye movements. Vision Res 39:1551–1554CrossRefPubMed von Campenhausen M, Kirschfeld K (1999) Visual attention modifies spectral sensitivity of nystagmic eye movements. Vision Res 39:1551–1554CrossRefPubMed
Zurück zum Zitat Cavanagh P (1992) Attention-based motion perception. Science 257:1563–1565PubMed Cavanagh P (1992) Attention-based motion perception. Science 257:1563–1565PubMed
Zurück zum Zitat Cavanagh P, Anstis S (1991) The contribution of color to motion in normal and color-deficient observers. Vision Res 31:2109–2148CrossRefPubMed Cavanagh P, Anstis S (1991) The contribution of color to motion in normal and color-deficient observers. Vision Res 31:2109–2148CrossRefPubMed
Zurück zum Zitat Cavanagh P, Tyler CW, Favreau OE (1984) Perceived velocity of moving chromatic gratings. J Opt Soc Am A 1:893–899PubMed Cavanagh P, Tyler CW, Favreau OE (1984) Perceived velocity of moving chromatic gratings. J Opt Soc Am A 1:893–899PubMed
Zurück zum Zitat Cavanagh P, MacLeod DI, Anstis SM (1987) Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones. J Opt Soc Am A 4:1428–1438PubMed Cavanagh P, MacLeod DI, Anstis SM (1987) Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones. J Opt Soc Am A 4:1428–1438PubMed
Zurück zum Zitat Chatterjee S, Callaway EM (2002) S cone contributions to the magnocellular visual pathway in macaque monkey. Neuron 35:1135–1146CrossRefPubMed Chatterjee S, Callaway EM (2002) S cone contributions to the magnocellular visual pathway in macaque monkey. Neuron 35:1135–1146CrossRefPubMed
Zurück zum Zitat Chawla D, Phillips J, Buechel C, Edwards R, Friston KJ (1998) Speed-dependent motion-sensitive responses in V5: an fMRI study. Neuroimage 7:86–96CrossRefPubMed Chawla D, Phillips J, Buechel C, Edwards R, Friston KJ (1998) Speed-dependent motion-sensitive responses in V5: an fMRI study. Neuroimage 7:86–96CrossRefPubMed
Zurück zum Zitat Chawla D, Buechel C, Edwards R, Howseman A, Josephs O, Ashburner J, Friston KJ (1999) Speed-dependent responses in V5: a replication study. Neuroimage 9:508–515CrossRefPubMed Chawla D, Buechel C, Edwards R, Howseman A, Josephs O, Ashburner J, Friston KJ (1999) Speed-dependent responses in V5: a replication study. Neuroimage 9:508–515CrossRefPubMed
Zurück zum Zitat Cheng K, Hasegawa T, Saleem KS, Tanaka K (1994) Comparison of neuronal selectivity for stimulus speed, length, and contrast in the prestriate visual cortical areas V4 and MT of the macaque monkey. J Neurophysiol 71:2269–2280PubMed Cheng K, Hasegawa T, Saleem KS, Tanaka K (1994) Comparison of neuronal selectivity for stimulus speed, length, and contrast in the prestriate visual cortical areas V4 and MT of the macaque monkey. J Neurophysiol 71:2269–2280PubMed
Zurück zum Zitat Chichilnisky EJ, Heeger D, Wandell BA (1993) Functional segregation of color and motion perception examined in motion nulling. Vision Res 33:2113–2125CrossRefPubMed Chichilnisky EJ, Heeger D, Wandell BA (1993) Functional segregation of color and motion perception examined in motion nulling. Vision Res 33:2113–2125CrossRefPubMed
Zurück zum Zitat Churan J, Ilg UJ (2001) Processing of second-order motion stimuli in primate middle temporal area and medial superior temporal area. J Opt Soc Am A 18:2297–2306 Churan J, Ilg UJ (2001) Processing of second-order motion stimuli in primate middle temporal area and medial superior temporal area. J Opt Soc Am A 18:2297–2306
Zurück zum Zitat Churchland M, Lisberger S (2001) Shifts in the population response in the middle temporal visual area parallel perceptual and motor illusions produced by apparent motion. J Neurosci 21:9387–9402PubMed Churchland M, Lisberger S (2001) Shifts in the population response in the middle temporal visual area parallel perceptual and motor illusions produced by apparent motion. J Neurosci 21:9387–9402PubMed
Zurück zum Zitat Cowey A, Marcar VL (1992) The effect of removing superior temporal cortical motion areas in the macaque monkey: I. Motion discrimination using simple dots. Eur J Neurosci 4:1219–1227PubMed Cowey A, Marcar VL (1992) The effect of removing superior temporal cortical motion areas in the macaque monkey: I. Motion discrimination using simple dots. Eur J Neurosci 4:1219–1227PubMed
Zurück zum Zitat Cowey A, Heywood CA, Irving-Bell L (2001) The regional cortical basis of achromatopsia: a study on macaque monkeys and an achromatopsic patient. Eur J Neurosci 14:1555–1566CrossRefPubMed Cowey A, Heywood CA, Irving-Bell L (2001) The regional cortical basis of achromatopsia: a study on macaque monkeys and an achromatopsic patient. Eur J Neurosci 14:1555–1566CrossRefPubMed
Zurück zum Zitat Crognale MA, Schor CM (1996) Contribution of chromatic mechanisms to the production of small-field optokinetic nystagmus (OKN) in normals and strabismics. Vision Res 36:1687–1698CrossRefPubMed Crognale MA, Schor CM (1996) Contribution of chromatic mechanisms to the production of small-field optokinetic nystagmus (OKN) in normals and strabismics. Vision Res 36:1687–1698CrossRefPubMed
Zurück zum Zitat Cusick CG, Seltzer B, Cola M, Griggs E (1995) Chemoarchitectonics and corticocortical terminations within the superior temporal sulcus of the rhesus monkey: evidence for subdivisions of superior temporal polysensory cortex. J Comp Neurol 360:513–535CrossRefPubMed Cusick CG, Seltzer B, Cola M, Griggs E (1995) Chemoarchitectonics and corticocortical terminations within the superior temporal sulcus of the rhesus monkey: evidence for subdivisions of superior temporal polysensory cortex. J Comp Neurol 360:513–535CrossRefPubMed
Zurück zum Zitat Dacey DM (2000) Parallel pathways for spectral coding in primate retina. Annu Rev Neurosci 23:743–775CrossRefPubMed Dacey DM (2000) Parallel pathways for spectral coding in primate retina. Annu Rev Neurosci 23:743–775CrossRefPubMed
Zurück zum Zitat Derrington AM, Krauskopf J, Lennie P (1984) Chromatic mechanisms in lateral geniculate nucleus of macaque. J Physiol 357:241–265PubMed Derrington AM, Krauskopf J, Lennie P (1984) Chromatic mechanisms in lateral geniculate nucleus of macaque. J Physiol 357:241–265PubMed
Zurück zum Zitat Desimone R, Ungerleider LG (1989) Neural mechanisms of visual processing in monkeys. In: Boller F, Grafman J (eds) Handbook of neuropsychology, vol 2. Elsevier, New York, pp 267–299 Desimone R, Ungerleider LG (1989) Neural mechanisms of visual processing in monkeys. In: Boller F, Grafman J (eds) Handbook of neuropsychology, vol 2. Elsevier, New York, pp 267–299
Zurück zum Zitat Distler C, Boussaoud D, Desimone R, Ungerleider LG (1993) Cortical connections of inferior temporal area TEO in macaque monkeys. J Comp Neurol 334:125–150CrossRefPubMed Distler C, Boussaoud D, Desimone R, Ungerleider LG (1993) Cortical connections of inferior temporal area TEO in macaque monkeys. J Comp Neurol 334:125–150CrossRefPubMed
Zurück zum Zitat Dobkins KR, Albright TD (1993) What happens if it changes color when it moves?: psychophysical experiments on the nature of chromatic input to motion detectors. Vision Res 33:1019–1036CrossRefPubMed Dobkins KR, Albright TD (1993) What happens if it changes color when it moves?: psychophysical experiments on the nature of chromatic input to motion detectors. Vision Res 33:1019–1036CrossRefPubMed
Zurück zum Zitat Dobkins KR, Albright TD (1994) What happens if it changes color when it moves?: the nature of chromatic input to macaque visual area MT. J Neurosci 14:4854–4870PubMed Dobkins KR, Albright TD (1994) What happens if it changes color when it moves?: the nature of chromatic input to macaque visual area MT. J Neurosci 14:4854–4870PubMed
Zurück zum Zitat Dobkins KR, Albright TD (1995) Behavioral and neural effects of chromatic isoluminance in the primate visual motion system. Vis Neurosci 12:321–332PubMed Dobkins KR, Albright TD (1995) Behavioral and neural effects of chromatic isoluminance in the primate visual motion system. Vis Neurosci 12:321–332PubMed
Zurück zum Zitat Dobkins KR, Gunther KL, Peterzell DH (2000a) What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitivity and chromatic (green/red) contrast sensitivity? Vision Res 40:613–628CrossRef Dobkins KR, Gunther KL, Peterzell DH (2000a) What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitivity and chromatic (green/red) contrast sensitivity? Vision Res 40:613–628CrossRef
Zurück zum Zitat Dobkins KR, Thiele A, Albright TD (2000b) Comparison of red-green equiluminance points in humans and macaques: evidence for different L:M cone ratios between species. J Opt Soc Am A 17:545–556 Dobkins KR, Thiele A, Albright TD (2000b) Comparison of red-green equiluminance points in humans and macaques: evidence for different L:M cone ratios between species. J Opt Soc Am A 17:545–556
Zurück zum Zitat Dougherty RF, Press WA, Wandell BA (1999) Perceived speed of colored stimuli. Neuron 24:893–899CrossRefPubMed Dougherty RF, Press WA, Wandell BA (1999) Perceived speed of colored stimuli. Neuron 24:893–899CrossRefPubMed
Zurück zum Zitat Dursteler MR, Wurtz RH (1988) Pursuit and optokinetic deficits following chemical lesions of cortical areas MT and MST. J Neurophysiol 60:940–965PubMed Dursteler MR, Wurtz RH (1988) Pursuit and optokinetic deficits following chemical lesions of cortical areas MT and MST. J Neurophysiol 60:940–965PubMed
Zurück zum Zitat Dursteler MR, Wurtz RH, Newsome WT (1987) Directional pursuit deficits following lesions of the foveal representation within the superior temporal sulcus of the macaque monkey. J Neurophysiol 57:1262–1287PubMed Dursteler MR, Wurtz RH, Newsome WT (1987) Directional pursuit deficits following lesions of the foveal representation within the superior temporal sulcus of the macaque monkey. J Neurophysiol 57:1262–1287PubMed
Zurück zum Zitat Elfar SD, Britten KH (1998) Chromatic contributions to motion processing in macaque extrastriate area MT. Soc Neurosci Abstr 24:1978 Elfar SD, Britten KH (1998) Chromatic contributions to motion processing in macaque extrastriate area MT. Soc Neurosci Abstr 24:1978
Zurück zum Zitat Farell B (1999) Color and luminance in the perception of 1- and 2- dimensional motion. Vision Res 39:2633–2647CrossRefPubMed Farell B (1999) Color and luminance in the perception of 1- and 2- dimensional motion. Vision Res 39:2633–2647CrossRefPubMed
Zurück zum Zitat Ferrera VP, Rudolph KK, Maunsell JH (1994) Responses of neurons in the parietal and temporal visual pathways during a motion task. J Neurosci 14:6171–6186PubMed Ferrera VP, Rudolph KK, Maunsell JH (1994) Responses of neurons in the parietal and temporal visual pathways during a motion task. J Neurosci 14:6171–6186PubMed
Zurück zum Zitat Ffytche DH, Skidmore BD, Zeki S (1995) Motion-from-hue activates area V5 of human visual cortex. Proc R Soc Lond B 260:353–358 Ffytche DH, Skidmore BD, Zeki S (1995) Motion-from-hue activates area V5 of human visual cortex. Proc R Soc Lond B 260:353–358
Zurück zum Zitat Gallyas F (1979) Silver staining of myelin by means of physical development. Neurol Res 1:203–209PubMed Gallyas F (1979) Silver staining of myelin by means of physical development. Neurol Res 1:203–209PubMed
Zurück zum Zitat Gegenfurtner KR, Hawken MJ (1995) Temporal and chromatic properties of motion mechanisms. Vision Res 35:1547–1563CrossRefPubMed Gegenfurtner KR, Hawken MJ (1995) Temporal and chromatic properties of motion mechanisms. Vision Res 35:1547–1563CrossRefPubMed
Zurück zum Zitat Gegenfurtner KR, Hawken MJ (1996) Perceived velocity of luminance, chromatic and non-fourier stimuli: influence of contrast and temporal frequency. Vision Res 36:1281–1290CrossRefPubMed Gegenfurtner KR, Hawken MJ (1996) Perceived velocity of luminance, chromatic and non-fourier stimuli: influence of contrast and temporal frequency. Vision Res 36:1281–1290CrossRefPubMed
Zurück zum Zitat Gegenfurtner KR, Kiper DC, Beusmans JM, Carandini M, Zaidi Q, Movshon JA (1994) Chromatic properties of neurons in macaque MT. Vis Neurosci 11:455–466PubMed Gegenfurtner KR, Kiper DC, Beusmans JM, Carandini M, Zaidi Q, Movshon JA (1994) Chromatic properties of neurons in macaque MT. Vis Neurosci 11:455–466PubMed
Zurück zum Zitat Gegenfurtner KR, Kiper DC, Fenstemaker SB (1996) Processing of color, form, and motion in macaque area V2. Vis Neurosci 13:161–172PubMed Gegenfurtner KR, Kiper DC, Fenstemaker SB (1996) Processing of color, form, and motion in macaque area V2. Vis Neurosci 13:161–172PubMed
Zurück zum Zitat Gegenfurtner KR, Kiper DC, Levitt JB (1997) Functional properties of neurons in macaque area V3. J Neurophysiol 77:1906–1923PubMed Gegenfurtner KR, Kiper DC, Levitt JB (1997) Functional properties of neurons in macaque area V3. J Neurophysiol 77:1906–1923PubMed
Zurück zum Zitat Gellman RS, Carl JR, Miles FA (1990) Short latency ocular-following responses in man. Vis Neurosci 5:107–122PubMed Gellman RS, Carl JR, Miles FA (1990) Short latency ocular-following responses in man. Vis Neurosci 5:107–122PubMed
Zurück zum Zitat Groh JM, Born RT, Newsome WT (1997) How is a sensory map read out? Effects of microstimulation in visual area MT on saccades and smooth pursuit eye movements. J Neurosci 17:4312–4330PubMed Groh JM, Born RT, Newsome WT (1997) How is a sensory map read out? Effects of microstimulation in visual area MT on saccades and smooth pursuit eye movements. J Neurosci 17:4312–4330PubMed
Zurück zum Zitat Guo K, Benson PJ (1999) Grating and plaid chrominance motion influences the suppressed ocular following response. Neuroreport 10:387–392PubMed Guo K, Benson PJ (1999) Grating and plaid chrominance motion influences the suppressed ocular following response. Neuroreport 10:387–392PubMed
Zurück zum Zitat Hadjikhani N, Tootell RB (2000) Projection of rods and cones within human visual cortex. Hum Brain Mapp 9:55–63CrossRefPubMed Hadjikhani N, Tootell RB (2000) Projection of rods and cones within human visual cortex. Hum Brain Mapp 9:55–63CrossRefPubMed
Zurück zum Zitat Havránek T (1993) Statistika pro biologické a lékařské vědy. Academia, Praha Havránek T (1993) Statistika pro biologické a lékařské vědy. Academia, Praha
Zurück zum Zitat Hawken MJ, Gegenfurtner KR, Tang C (1994) Contrast dependence of colour and luminance motion mechanisms in human vision. Nature 367:268–270CrossRefPubMed Hawken MJ, Gegenfurtner KR, Tang C (1994) Contrast dependence of colour and luminance motion mechanisms in human vision. Nature 367:268–270CrossRefPubMed
Zurück zum Zitat Heeger DJ, Boynton GM, Demb JB, Seidemann E, Newsome WT (1999) Motion opponency in visual cortex. J Neurosci 19:7162–7174PubMed Heeger DJ, Boynton GM, Demb JB, Seidemann E, Newsome WT (1999) Motion opponency in visual cortex. J Neurosci 19:7162–7174PubMed
Zurück zum Zitat Hendry SH, Reid RC (2000) The koniocellular pathway in primate vision. Annu Rev Neurosci 23:127–153CrossRefPubMed Hendry SH, Reid RC (2000) The koniocellular pathway in primate vision. Annu Rev Neurosci 23:127–153CrossRefPubMed
Zurück zum Zitat Hess DT, Merker BH (1983) Technical modifications of Gallyas’ silver stain for myelin. J Neurosi Methods 8:95–97CrossRef Hess DT, Merker BH (1983) Technical modifications of Gallyas’ silver stain for myelin. J Neurosi Methods 8:95–97CrossRef
Zurück zum Zitat Heywood CA, Gaffan D, Cowey A (1995) Cerebral achromatopsia in monkeys. Eur J Neurosci 7:1064–1073PubMed Heywood CA, Gaffan D, Cowey A (1995) Cerebral achromatopsia in monkeys. Eur J Neurosci 7:1064–1073PubMed
Zurück zum Zitat Hof PR, Morrison JH (1995) Neurofilament protein defines regional patterns of cortical organisation in the macaque monkey visual system: a quantitative imunohistochemical analysis. J Comp Neurol 352:161–186CrossRefPubMed Hof PR, Morrison JH (1995) Neurofilament protein defines regional patterns of cortical organisation in the macaque monkey visual system: a quantitative imunohistochemical analysis. J Comp Neurol 352:161–186CrossRefPubMed
Zurück zum Zitat Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70 Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70
Zurück zum Zitat Ilg U (1997) Responses of primate area MT during the execution of optokinetic nystagmus and afternystagmus. Exp Brain Res 113:361–361PubMed Ilg U (1997) Responses of primate area MT during the execution of optokinetic nystagmus and afternystagmus. Exp Brain Res 113:361–361PubMed
Zurück zum Zitat Ilg U, Churan J (2004) Motion perception without explicit activity in areas MT and MST. J Neurophysiol 92:1512–1523CrossRefPubMed Ilg U, Churan J (2004) Motion perception without explicit activity in areas MT and MST. J Neurophysiol 92:1512–1523CrossRefPubMed
Zurück zum Zitat Johnson EN, Hawken MJ, Shapley R (2001) The spatial transformation of color in the primary visual cortex of the macaque monkey. Nat Neurosci 4:409–416CrossRefPubMed Johnson EN, Hawken MJ, Shapley R (2001) The spatial transformation of color in the primary visual cortex of the macaque monkey. Nat Neurosci 4:409–416CrossRefPubMed
Zurück zum Zitat Kaas JH (1997) Theories of visual cortex organisation in primates. In: Rockland KS, Kaas JH, Peters A (eds) Cerebral cortex, vol 12. Plenum, New York, pp 91–125 Kaas JH (1997) Theories of visual cortex organisation in primates. In: Rockland KS, Kaas JH, Peters A (eds) Cerebral cortex, vol 12. Plenum, New York, pp 91–125
Zurück zum Zitat Kaiser PK, Lee BB, Martin PR, Valberg A (1990) The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina. J Physiol 422:153–183PubMed Kaiser PK, Lee BB, Martin PR, Valberg A (1990) The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina. J Physiol 422:153–183PubMed
Zurück zum Zitat Kawano K (1999) Ocular tracking: behavior and neurophysiology. Curr Opin Neurobiol 9:467–473CrossRefPubMed Kawano K (1999) Ocular tracking: behavior and neurophysiology. Curr Opin Neurobiol 9:467–473CrossRefPubMed
Zurück zum Zitat Komatsu H, Wurtz RH (1989) Modulation of pursuit eye movements by stimulation of cortical areas MT and MST. J Neurophysiol 62:31–47PubMed Komatsu H, Wurtz RH (1989) Modulation of pursuit eye movements by stimulation of cortical areas MT and MST. J Neurophysiol 62:31–47PubMed
Zurück zum Zitat Lee BB, Pokorny J, Smith VC, Martin PR, Valberg A (1990) Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. J Opt Soc Am A 7:2223–2236PubMed Lee BB, Pokorny J, Smith VC, Martin PR, Valberg A (1990) Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. J Opt Soc Am A 7:2223–2236PubMed
Zurück zum Zitat Lee BB, Smith VC, Pokorny J, Kremers J (1997) Rod inputs to macaque ganglion cells. Vision Res 37:2813–2828PubMed Lee BB, Smith VC, Pokorny J, Kremers J (1997) Rod inputs to macaque ganglion cells. Vision Res 37:2813–2828PubMed
Zurück zum Zitat Leventhal AG, Thompson KG, Liu D, Zhou Y, Ault SJ (1995) Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex. J Neurosci 15:1808–1818PubMed Leventhal AG, Thompson KG, Liu D, Zhou Y, Ault SJ (1995) Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex. J Neurosci 15:1808–1818PubMed
Zurück zum Zitat Lisberger S, Movshon J (1999) Visual motion analysis for pursuit eye movements in area MT of macaque monkeys. J Neurosci 19:2224–2246PubMed Lisberger S, Movshon J (1999) Visual motion analysis for pursuit eye movements in area MT of macaque monkeys. J Neurosci 19:2224–2246PubMed
Zurück zum Zitat Lu ZL, Lesmes LA, Sperling G (1999) The mechanism of isoluminant chromatic motion perception. Proc Natl Acad Sci USA 96:8289–8294CrossRefPubMed Lu ZL, Lesmes LA, Sperling G (1999) The mechanism of isoluminant chromatic motion perception. Proc Natl Acad Sci USA 96:8289–8294CrossRefPubMed
Zurück zum Zitat Marcar VL, Cowey A (1992) The effect of removing superior temporal cortical motion areas in the macaque monkey: II. Motion discrimination using random dot displays. Eur J Neurosci 4:1228–1238PubMed Marcar VL, Cowey A (1992) The effect of removing superior temporal cortical motion areas in the macaque monkey: II. Motion discrimination using random dot displays. Eur J Neurosci 4:1228–1238PubMed
Zurück zum Zitat Maunsell JH, Van Essen DC (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol 49:1127–1147PubMed Maunsell JH, Van Essen DC (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol 49:1127–1147PubMed
Zurück zum Zitat Maunsell JH, Nealey TA, DePriest DD (1990) Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. J Neurosci 10:3323–3334PubMed Maunsell JH, Nealey TA, DePriest DD (1990) Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. J Neurosci 10:3323–3334PubMed
Zurück zum Zitat McKeefry DJ (2001) Visual evoked potentials elicited by chromatic motion onset. Vision Res 41:2005–2025CrossRefPubMed McKeefry DJ (2001) Visual evoked potentials elicited by chromatic motion onset. Vision Res 41:2005–2025CrossRefPubMed
Zurück zum Zitat McKeefry DJ (2002) The influence of stimulus chromaticity on the isoluminant motion-onset VEP. Vision Res 42:909–922CrossRefPubMed McKeefry DJ (2002) The influence of stimulus chromaticity on the isoluminant motion-onset VEP. Vision Res 42:909–922CrossRefPubMed
Zurück zum Zitat Miles FA, Kawano K, Optican LM (1986) Short-latency ocular following responses of monkey. I. Dependence on temporospatial properties of visual input. J Neurophysiol 56:1321–1354PubMed Miles FA, Kawano K, Optican LM (1986) Short-latency ocular following responses of monkey. I. Dependence on temporospatial properties of visual input. J Neurophysiol 56:1321–1354PubMed
Zurück zum Zitat Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways. Trends Neurosci 6:414–417CrossRef Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways. Trends Neurosci 6:414–417CrossRef
Zurück zum Zitat Newsome WT, Pare EB (1988) A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J Neurosci 8:2201–2211PubMed Newsome WT, Pare EB (1988) A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J Neurosci 8:2201–2211PubMed
Zurück zum Zitat Newsome WT, Wurtz RH, Dursteler MR, Mikami A (1985) Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. J Neurosci 5:825–840PubMed Newsome WT, Wurtz RH, Dursteler MR, Mikami A (1985) Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. J Neurosci 5:825–840PubMed
Zurück zum Zitat Newsome W, Wurtz R, Komatsu H (1988) Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. J Neurophysiol 60:604–620PubMed Newsome W, Wurtz R, Komatsu H (1988) Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. J Neurophysiol 60:604–620PubMed
Zurück zum Zitat Newsome WT, Britten KH, Movshon JA (1989) Neuronal correlates of a perceptual decision. Nature 341:52–54CrossRefPubMed Newsome WT, Britten KH, Movshon JA (1989) Neuronal correlates of a perceptual decision. Nature 341:52–54CrossRefPubMed
Zurück zum Zitat van Norren D, Padmos P (1975) Cone dark adaptation: the influence of halothane anesthesia. Invest Ophthalmol Vis Sci 14:212–227 van Norren D, Padmos P (1975) Cone dark adaptation: the influence of halothane anesthesia. Invest Ophthalmol Vis Sci 14:212–227
Zurück zum Zitat van Norren D, Padmos P (1977) Influence of anesthetics, ethyl alcohol, and freon on dark adaptation of monkey cone ERG. Invest Ophthalmol Vis Sci 16:80–83PubMed van Norren D, Padmos P (1977) Influence of anesthetics, ethyl alcohol, and freon on dark adaptation of monkey cone ERG. Invest Ophthalmol Vis Sci 16:80–83PubMed
Zurück zum Zitat O’Keefe LP, Movshon JA (1998) Processing of first- and second- order motion signals by neurons in area MT of the macaque monkey. Vis Neurosci 15:305–317CrossRefPubMed O’Keefe LP, Movshon JA (1998) Processing of first- and second- order motion signals by neurons in area MT of the macaque monkey. Vis Neurosci 15:305–317CrossRefPubMed
Zurück zum Zitat Orban GA (1997) Visual processing in macaque area MT/V5 and its satellites (MSTd and MSTv). In: Rockland KS, Kaas JH, Peters A (eds) Cerebral cortex, vol 12. Plenum, New York, pp 359–434 Orban GA (1997) Visual processing in macaque area MT/V5 and its satellites (MSTd and MSTv). In: Rockland KS, Kaas JH, Peters A (eds) Cerebral cortex, vol 12. Plenum, New York, pp 359–434
Zurück zum Zitat Orban GA, Saunders RC, Vandenbussche E (1995) Lesions of the superior temporal cortical motion areas impair speed discrimination in the macaque monkey. Eur J Neurosci 7:2261–2276PubMed Orban GA, Saunders RC, Vandenbussche E (1995) Lesions of the superior temporal cortical motion areas impair speed discrimination in the macaque monkey. Eur J Neurosci 7:2261–2276PubMed
Zurück zum Zitat Pack CC, Berezovskii VK, Born RT (2001) Dynamic properties of neurons in cortical area MT in alert and anesthetized macaque monkeys. Nature 414:905–908CrossRefPubMed Pack CC, Berezovskii VK, Born RT (2001) Dynamic properties of neurons in cortical area MT in alert and anesthetized macaque monkeys. Nature 414:905–908CrossRefPubMed
Zurück zum Zitat Pasternak T, Merigan WH (1994) Motion perception following lesions of the superior temporal sulcus in the monkey. Cereb Cortex 4:247–259PubMed Pasternak T, Merigan WH (1994) Motion perception following lesions of the superior temporal sulcus in the monkey. Cereb Cortex 4:247–259PubMed
Zurück zum Zitat Patzwahl DR, Zanker JM, Altenmuller EO (1994) Cortical potentials reflecting motion processing in humans. Vis Neurosci 11:1135–1147PubMed Patzwahl DR, Zanker JM, Altenmuller EO (1994) Cortical potentials reflecting motion processing in humans. Vis Neurosci 11:1135–1147PubMed
Zurück zum Zitat Perrone JA, Thiele A (2001) Speed skills: measuring the visual speed analyzing properties of primate MT neurons. Nat Neurosci 4:526–532PubMed Perrone JA, Thiele A (2001) Speed skills: measuring the visual speed analyzing properties of primate MT neurons. Nat Neurosci 4:526–532PubMed
Zurück zum Zitat Purpura K, Kaplan E, Shapley RM (1988) Background light and the contrast gain of primate P and M retinal ganglion cells. Proc Natl Acad Sci USA 85:4534–4537PubMed Purpura K, Kaplan E, Shapley RM (1988) Background light and the contrast gain of primate P and M retinal ganglion cells. Proc Natl Acad Sci USA 85:4534–4537PubMed
Zurück zum Zitat Rees G, Friston K, Koch C (2000) A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci 3:716–723CrossRefPubMed Rees G, Friston K, Koch C (2000) A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci 3:716–723CrossRefPubMed
Zurück zum Zitat Robson T (1999) Topics in computerized visual-stimulus generation. In: Carpenter R, Robson J (eds) Vision research: a practical guide to laboratory methods. Oxford University Press, New York, pp 81–105 Robson T (1999) Topics in computerized visual-stimulus generation. In: Carpenter R, Robson J (eds) Vision research: a practical guide to laboratory methods. Oxford University Press, New York, pp 81–105
Zurück zum Zitat Rudolph K, Pasternak T (1999) Transient and permanent deficits in motion perception after lesions of cortical areas MT and MST in the macaque monkey. Cereb Cortex 9:90–100CrossRefPubMed Rudolph K, Pasternak T (1999) Transient and permanent deficits in motion perception after lesions of cortical areas MT and MST in the macaque monkey. Cereb Cortex 9:90–100CrossRefPubMed
Zurück zum Zitat Saito H, Tanaka K, Isono H, Yasuda M, Mikami A (1989) Directionally selective response of cells in the middle temporal area (MT) of the macaque monkey to the movement of equiluminous opponent color stimuli. Exp Brain Res 75:1–14CrossRefPubMed Saito H, Tanaka K, Isono H, Yasuda M, Mikami A (1989) Directionally selective response of cells in the middle temporal area (MT) of the macaque monkey to the movement of equiluminous opponent color stimuli. Exp Brain Res 75:1–14CrossRefPubMed
Zurück zum Zitat Salzman CD, Britten KH, Newsome WT (1990) Cortical microstimulation influences perceptual judgements of motion direction. Nature 346:174–177CrossRefPubMed Salzman CD, Britten KH, Newsome WT (1990) Cortical microstimulation influences perceptual judgements of motion direction. Nature 346:174–177CrossRefPubMed
Zurück zum Zitat Salzman CD, Murasugi CM, Britten KH, Newsome WT (1992) Microstimulation in visual area MT: effects on direction discrimination performance. J Neurosci 12:2331–2355PubMed Salzman CD, Murasugi CM, Britten KH, Newsome WT (1992) Microstimulation in visual area MT: effects on direction discrimination performance. J Neurosci 12:2331–2355PubMed
Zurück zum Zitat Schiller PH (1993) The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey. Vis Neurosci 10:717–746PubMedCrossRef Schiller PH (1993) The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey. Vis Neurosci 10:717–746PubMedCrossRef
Zurück zum Zitat Schiller PH, Logothetis NK, Charles ER (1991) Parallel pathways in the visual system: their role in perception at isoluminance. Neuropsychologia 29:433–441CrossRefPubMed Schiller PH, Logothetis NK, Charles ER (1991) Parallel pathways in the visual system: their role in perception at isoluminance. Neuropsychologia 29:433–441CrossRefPubMed
Zurück zum Zitat Sclar G, Maunsell JH, Lennie P (1990) Coding of image contrast in central visual pathways of the macaque monkey. Vision Res 30:1–10CrossRefPubMed Sclar G, Maunsell JH, Lennie P (1990) Coding of image contrast in central visual pathways of the macaque monkey. Vision Res 30:1–10CrossRefPubMed
Zurück zum Zitat Seidemann E, Poirson AB, Wandell BA, Newsome WT (1999) Color signals in area MT of the macaque monkey. Neuron 24:911–917CrossRefPubMed Seidemann E, Poirson AB, Wandell BA, Newsome WT (1999) Color signals in area MT of the macaque monkey. Neuron 24:911–917CrossRefPubMed
Zurück zum Zitat Seiffert AE, Cavanagh P (1999) Position-based motion perception for color and texture stimuli: effects of contrast and speed. Vision Res 39:4172–4185CrossRefPubMed Seiffert AE, Cavanagh P (1999) Position-based motion perception for color and texture stimuli: effects of contrast and speed. Vision Res 39:4172–4185CrossRefPubMed
Zurück zum Zitat Shadlen MN, Britten KH, Newsome WT, Movshon JA (1996) A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J Neurosci 16:1486–1510PubMed Shadlen MN, Britten KH, Newsome WT, Movshon JA (1996) A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J Neurosci 16:1486–1510PubMed
Zurück zum Zitat Sincich LC, Park KP, Wohlgemuth MJ, Horton JC (2004) Bypassing V1: a direct geniculate input to area MT. Nat Neurosci 7:1123–1128CrossRefPubMed Sincich LC, Park KP, Wohlgemuth MJ, Horton JC (2004) Bypassing V1: a direct geniculate input to area MT. Nat Neurosci 7:1123–1128CrossRefPubMed
Zurück zum Zitat Smith AT, Hammond P (1986) Hemifield differences in perceived velocity. Perception 15:111–117PubMed Smith AT, Hammond P (1986) Hemifield differences in perceived velocity. Perception 15:111–117PubMed
Zurück zum Zitat Sperling G, Lu Z-L (1998) A system analysis of visual motion perception. In: Watanabe T (eds) High-level motion processing: computational, neurobiological, and psychophysical perspectives. MIT Press, Cambridge, pp 153–183 Sperling G, Lu Z-L (1998) A system analysis of visual motion perception. In: Watanabe T (eds) High-level motion processing: computational, neurobiological, and psychophysical perspectives. MIT Press, Cambridge, pp 153–183
Zurück zum Zitat Stockman A, Sharpe LT (2000) The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vision Res 40:1711–1737CrossRefPubMed Stockman A, Sharpe LT (2000) The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vision Res 40:1711–1737CrossRefPubMed
Zurück zum Zitat Sun H, Smithson H, Lee B, Zaidi Q (2004) A new technique for measuring cone inputs to visual neurons. Invest Ophthalmol Vis Sci 45, E-Abstract 4277 Sun H, Smithson H, Lee B, Zaidi Q (2004) A new technique for measuring cone inputs to visual neurons. Invest Ophthalmol Vis Sci 45, E-Abstract 4277
Zurück zum Zitat Tamura H, Sato H, Katsuyama N, Hata Y, Tsumoto T (1996) Less segregated processing of visual information in V2 than in V1 of the monkey visual cortex. Eur J Neurosci 8:300–309PubMed Tamura H, Sato H, Katsuyama N, Hata Y, Tsumoto T (1996) Less segregated processing of visual information in V2 than in V1 of the monkey visual cortex. Eur J Neurosci 8:300–309PubMed
Zurück zum Zitat Teller DY, Lindsey DT (1993) Motion at isoluminance: motion dead zones in three-dimensional color space. J Opt Soc Am A 10:1324–1331PubMed Teller DY, Lindsey DT (1993) Motion at isoluminance: motion dead zones in three-dimensional color space. J Opt Soc Am A 10:1324–1331PubMed
Zurück zum Zitat Thiele A, Distler C, Hoffmann KP (1999a) Decision-related activity in the macaque dorsal visual pathway. Eur J Neurosci 11:2044–2058CrossRef Thiele A, Distler C, Hoffmann KP (1999a) Decision-related activity in the macaque dorsal visual pathway. Eur J Neurosci 11:2044–2058CrossRef
Zurück zum Zitat Thiele A, Dobkins KR, Albright TD (1999b) The contribution of color to motion processing in macaque middle temporal area. J Neurosci 19:6571–6587 Thiele A, Dobkins KR, Albright TD (1999b) The contribution of color to motion processing in macaque middle temporal area. J Neurosci 19:6571–6587
Zurück zum Zitat Thiele A, Dobkins KR, Albright TD (2000) Neural correlates of contrast detection at threshold. Neuron 26:715–724CrossRefPubMed Thiele A, Dobkins KR, Albright TD (2000) Neural correlates of contrast detection at threshold. Neuron 26:715–724CrossRefPubMed
Zurück zum Zitat Thiele A, Dobkins KR, Albright TD (2001) Neural correlates of chromatic motion perception. Neuron 32:351–358CrossRefPubMed Thiele A, Dobkins KR, Albright TD (2001) Neural correlates of chromatic motion perception. Neuron 32:351–358CrossRefPubMed
Zurück zum Zitat Thiele A, Rezec A, Dobkins KR (2002) Chromatic input to motion processing in the absence of attention. Vision Res 42:1395–1401CrossRefPubMed Thiele A, Rezec A, Dobkins KR (2002) Chromatic input to motion processing in the absence of attention. Vision Res 42:1395–1401CrossRefPubMed
Zurück zum Zitat Tootell RB, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15:3215–3230PubMed Tootell RB, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15:3215–3230PubMed
Zurück zum Zitat Tychsen L, Lisberger S (1986) Visual motion processing for the initiation of smooth-pursuit eye movements in humans. J Neurophysiol 56:953–968PubMed Tychsen L, Lisberger S (1986) Visual motion processing for the initiation of smooth-pursuit eye movements in humans. J Neurophysiol 56:953–968PubMed
Zurück zum Zitat Ulbert I, Karmos G, Heit G, Halgren E (2001) Early discrimination of coherent versus incoherent motion by multiunit and synaptic activity in human putative MT+. Hum Brain Mapp 13:226–238CrossRefPubMed Ulbert I, Karmos G, Heit G, Halgren E (2001) Early discrimination of coherent versus incoherent motion by multiunit and synaptic activity in human putative MT+. Hum Brain Mapp 13:226–238CrossRefPubMed
Zurück zum Zitat Valberg A, Lee BB, Kaiser PK, Kremers J (1992) Responses of macaque ganglion cells to movement of chromatic borders. J Physiol 458:579–602PubMed Valberg A, Lee BB, Kaiser PK, Kremers J (1992) Responses of macaque ganglion cells to movement of chromatic borders. J Physiol 458:579–602PubMed
Zurück zum Zitat Van Essen DC, Maunsell JHR (1980) Two-dimensional maps of the cerebral cortex. J Comp Neurol 191:255–281CrossRefPubMed Van Essen DC, Maunsell JHR (1980) Two-dimensional maps of the cerebral cortex. J Comp Neurol 191:255–281CrossRefPubMed
Zurück zum Zitat Vanduffel W, Fize D, Mandeville JB, Nelissen K, Hecke PV, Rosen BR, Tootell RB, Orban GA (2001) Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron 32:565–577CrossRefPubMed Vanduffel W, Fize D, Mandeville JB, Nelissen K, Hecke PV, Rosen BR, Tootell RB, Orban GA (2001) Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron 32:565–577CrossRefPubMed
Zurück zum Zitat Walsh V, Carden D, Butler SR, Kulikowski JJ (1993) The effects of V4 lesions on the visual abilities of macaques: hue discrimination and colour constancy. Behav Brain Res 53:51–62PubMed Walsh V, Carden D, Butler SR, Kulikowski JJ (1993) The effects of V4 lesions on the visual abilities of macaques: hue discrimination and colour constancy. Behav Brain Res 53:51–62PubMed
Zurück zum Zitat Wandell BA (1995) Foundations of vision. Sinauer Press, Sunderland Wandell BA (1995) Foundations of vision. Sinauer Press, Sunderland
Zurück zum Zitat Wandell BA, Poirson AB, Newsome WT, Baseler HA, Boynton GM, Huk A, Gandhi S, Sharpe LT (1999) Color signals in human motion-selective cortex. Neuron 24:901–909CrossRefPubMed Wandell BA, Poirson AB, Newsome WT, Baseler HA, Boynton GM, Huk A, Gandhi S, Sharpe LT (1999) Color signals in human motion-selective cortex. Neuron 24:901–909CrossRefPubMed
Zurück zum Zitat Wyszecki G, Stiles WS (1982) Color science. Wiley, New York Wyszecki G, Stiles WS (1982) Color science. Wiley, New York
Zurück zum Zitat Yamasaki DS, Wurtz RH (1991) Recovery of function after lesions in the superior temporal sulcus in the monkey. J Neurophysiol 66:651–673PubMed Yamasaki DS, Wurtz RH (1991) Recovery of function after lesions in the superior temporal sulcus in the monkey. J Neurophysiol 66:651–673PubMed
Zurück zum Zitat Zeki S (1974) Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J Physiol 236:549–573PubMed Zeki S (1974) Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J Physiol 236:549–573PubMed
Zurück zum Zitat Zeki S (1983) The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex. Proc R Soc Lond B 217:449–470PubMedCrossRef Zeki S (1983) The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex. Proc R Soc Lond B 217:449–470PubMedCrossRef
Zurück zum Zitat Zeki S (1993) A vision of the brain. Blackwell, London Zeki S (1993) A vision of the brain. Blackwell, London
Metadaten
Titel
Chromatic sensitivity of neurones in area MT of the anaesthetised macaque monkey compared to human motion perception
verfasst von
Igor Riečanský
Alexander Thiele
Claudia Distler
Klaus-Peter Hoffmann
Publikationsdatum
01.12.2005
Verlag
Springer-Verlag
Erschienen in
Experimental Brain Research / Ausgabe 4/2005
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-005-0058-2

Weitere Artikel der Ausgabe 4/2005

Experimental Brain Research 4/2005 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.