Skip to main content
Erschienen in: Experimental Brain Research 4/2006

01.10.2006 | Research Article

Muscle synergies during voluntary body sway: combining across-trials and within-a-trial analyses

verfasst von: Yun Wang, Tadayoshi Asaka, Vladimir M. Zatsiorsky, Mark L. Latash

Erschienen in: Experimental Brain Research | Ausgabe 4/2006

Einloggen, um Zugang zu erhalten

Abstract

We investigated co-varied changes in muscle activity during voluntary sway tasks that required a quick shift of the center of pressure (COP). We hypothesized that multi-muscle synergies (defined as task-specific covariation of elemental variables, muscle modes) stabilize a COP location in the anterior–posterior direction prior to a voluntary COP shift and that during the shift the synergies would weaken. Standing subjects performed two tasks, a cyclic COP shift over a range corresponding to 80% of the maximal amplitude of voluntary COP shift at 1 Hz and a unidirectional quick COP shift over the same nominal amplitude. The cyclic sway task was used to define muscle modes (M-modes, leg and trunk muscle groups with parallel scaling of muscle activation level within a group) and the relations between small changes in the magnitudes of M-modes [in the principal component analysis (PCA), the M-mode magnitudes are equivalent to PC scores] and COP shifts. A novel approach was used involving PCA applied to indices of muscle integrated activity measured both within a trial and across trials. The unidirectional sway task was performed in a self-paced (SP) manner and under a typical simple reaction time (RT) instruction. M-modes were also defined along trials at those tasks; they have been shown to be similar across tasks. Integrated indices of muscle activity in the SP-sway and RT-sway tasks were transformed into the M-modes. Variance in the M-mode space was partitioned into two components, one that did not affect the average value of COP shift (V UCM) and the other that did (V ORT). An index (ΔV) corresponding to the normalized difference between V UCM and V ORT was computed. During steady-state posture, ΔV was positive corresponding to most M-mode variance lying in a sub-space corresponding to a stable COP location across trials. Positive ΔV values have been interpreted as reflecting a multi-M-mode synergy stabilizing the COP location. The magnitude of ΔV was larger in SP trials than in RT trials. During voluntary COP shifts, the ΔV magnitude dropped to zero or even became negative. We conclude that M-mode synergies stabilize COP location during quiet standing, while these synergies weaken or disappear during fast voluntary COP shifts. Under RT conditions, the COP stabilizing synergies were weaker supposedly to facilitate a quick COP shift without time for preparation. The suggested method of M-mode identification may potentially be applied to analysis of postural synergies in persons with impaired postural control such as elderly persons, persons with atypical development, or in the course of rehabilitation after an injury.
Literatur
Zurück zum Zitat Alexandrov A, Frolov A, Massion J (1998) Axial synergies during human upper trunk bending. Exp Brain Res 118:210–220CrossRefPubMed Alexandrov A, Frolov A, Massion J (1998) Axial synergies during human upper trunk bending. Exp Brain Res 118:210–220CrossRefPubMed
Zurück zum Zitat Bennett DJ (1993) Torques generated at the human elbow joint in response to constant position errors imposed during voluntary movements. Exp Brain Res 95:488–498PubMed Bennett DJ (1993) Torques generated at the human elbow joint in response to constant position errors imposed during voluntary movements. Exp Brain Res 95:488–498PubMed
Zurück zum Zitat Bennett DJ, Hollerbach JM, Xu Y, Hunter IW (1992) Time-varying stiffness of human elbow joint during cyclic voluntary movement. Exp Brain Res 88:433–442CrossRefPubMed Bennett DJ, Hollerbach JM, Xu Y, Hunter IW (1992) Time-varying stiffness of human elbow joint during cyclic voluntary movement. Exp Brain Res 88:433–442CrossRefPubMed
Zurück zum Zitat Bernstein N (1967) The coordination and regulation of movements. Pergamon Press, London Bernstein N (1967) The coordination and regulation of movements. Pergamon Press, London
Zurück zum Zitat Bouisset S, Zattara7 M (1990) Segmental movement as a perturbation to balance? Facts and concepts. In: Winters JM, Woo SL-Y (eds) Multiple muscle systems. Biomechanics and Movement Organization. Springer, Berlin Heidelberg New York, pp 498–506 Bouisset S, Zattara7 M (1990) Segmental movement as a perturbation to balance? Facts and concepts. In: Winters JM, Woo SL-Y (eds) Multiple muscle systems. Biomechanics and Movement Organization. Springer, Berlin Heidelberg New York, pp 498–506
Zurück zum Zitat Cheung VC, d’Avella A, Tresch MC, Bizzi E (2005) Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors. J Neurosci 25:6419–6434CrossRefPubMed Cheung VC, d’Avella A, Tresch MC, Bizzi E (2005) Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors. J Neurosci 25:6419–6434CrossRefPubMed
Zurück zum Zitat Corcos DM, Gottlieb GL, Latash ML, Almeida GL, Agarwal GC (1992) Electromechanical delay: an experimental artefact. J Electromyogr Kinesiol 2:59–68CrossRef Corcos DM, Gottlieb GL, Latash ML, Almeida GL, Agarwal GC (1992) Electromechanical delay: an experimental artefact. J Electromyogr Kinesiol 2:59–68CrossRef
Zurück zum Zitat D’Avella A, Bizzi E (2005) Shared and specific muscle synergies in natural motor behaviors. Proc Natl Acad Sci USA 102:3076–3081CrossRefPubMed D’Avella A, Bizzi E (2005) Shared and specific muscle synergies in natural motor behaviors. Proc Natl Acad Sci USA 102:3076–3081CrossRefPubMed
Zurück zum Zitat De Wolf S, Slijper H, Latash ML (1998) Anticipatory postural adjustments during self-paced and reaction-time movements, Exp Brain Res 121:7–19CrossRefPubMed De Wolf S, Slijper H, Latash ML (1998) Anticipatory postural adjustments during self-paced and reaction-time movements, Exp Brain Res 121:7–19CrossRefPubMed
Zurück zum Zitat Duarte M, Freitas SM (2005) Speed-accuracy trade-off in voluntary postural movements. Motor Control 9:180–196PubMed Duarte M, Freitas SM (2005) Speed-accuracy trade-off in voluntary postural movements. Motor Control 9:180–196PubMed
Zurück zum Zitat Frolov AA, Prokopenko RA, Dufosse M, Ouezdou FB (2006) Adjustment of the human arm viscoelastic properties to the direction of reaching. Biol Cybern 94:97–109CrossRefPubMed Frolov AA, Prokopenko RA, Dufosse M, Ouezdou FB (2006) Adjustment of the human arm viscoelastic properties to the direction of reaching. Biol Cybern 94:97–109CrossRefPubMed
Zurück zum Zitat Horak FB, Nashner LM (1986) Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol 55:1369–1381PubMed Horak FB, Nashner LM (1986) Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol 55:1369–1381PubMed
Zurück zum Zitat Ivanenko YP, Poppele RE, Lacquaniti F (2004) Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 556:267–282CrossRefPubMed Ivanenko YP, Poppele RE, Lacquaniti F (2004) Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 556:267–282CrossRefPubMed
Zurück zum Zitat Ivanenko YP, Cappellini G, Dominici N, Poppele RE, Lacquaniti F (2005) Coordination of locomotion with voluntary movements in humans. J Neurosci 25:7238–7253CrossRefPubMed Ivanenko YP, Cappellini G, Dominici N, Poppele RE, Lacquaniti F (2005) Coordination of locomotion with voluntary movements in humans. J Neurosci 25:7238–7253CrossRefPubMed
Zurück zum Zitat Krishnamoorthy V, Goodman S, Zatsiorsky VM, Latash ML (2003a) Muscle synergies during shifts of the center of pressure by standing persons: identification of muscle modes. Biol Cybern 89:152–161CrossRef Krishnamoorthy V, Goodman S, Zatsiorsky VM, Latash ML (2003a) Muscle synergies during shifts of the center of pressure by standing persons: identification of muscle modes. Biol Cybern 89:152–161CrossRef
Zurück zum Zitat Krishnamoorthy V, Latash ML, Scholz JP, Zatsiorsky VM (2003b) Muscle synergies during shifts of the center of pressure by standing persons. Exp Brain Res 152:281–292CrossRef Krishnamoorthy V, Latash ML, Scholz JP, Zatsiorsky VM (2003b) Muscle synergies during shifts of the center of pressure by standing persons. Exp Brain Res 152:281–292CrossRef
Zurück zum Zitat Krishnamoorthy V, Latash ML, Scholz JP, Zatsiorsky VM (2004) Muscle modes during shifts of the center of pressure by standing persons: effect of instability and additional support. Exp Brain Res 157:18–31CrossRefPubMed Krishnamoorthy V, Latash ML, Scholz JP, Zatsiorsky VM (2004) Muscle modes during shifts of the center of pressure by standing persons: effect of instability and additional support. Exp Brain Res 157:18–31CrossRefPubMed
Zurück zum Zitat Latash ML, Gottlieb GL (1991) Reconstruction of elbow joint compliant characteristics during fast and slow voluntary movements. Neuroscience 43:697–712CrossRefPubMed Latash ML, Gottlieb GL (1991) Reconstruction of elbow joint compliant characteristics during fast and slow voluntary movements. Neuroscience 43:697–712CrossRefPubMed
Zurück zum Zitat Latash ML, Scholz JF, Danion F, Schöner G (2001) Structure of motor variability in marginally redundant multi-finger force production tasks. Exp Brain Res 141:153–165CrossRefPubMed Latash ML, Scholz JF, Danion F, Schöner G (2001) Structure of motor variability in marginally redundant multi-finger force production tasks. Exp Brain Res 141:153–165CrossRefPubMed
Zurück zum Zitat Latash ML, Scholz JP, Schöner G (2002) Motor control strategies revealed in the structure of motor variability. Exer Sport Sci Rev 30:26–31 Latash ML, Scholz JP, Schöner G (2002) Motor control strategies revealed in the structure of motor variability. Exer Sport Sci Rev 30:26–31
Zurück zum Zitat Latash ML, Danion F, Scholz JF, Schöner G (2003) Coordination of multi-element motor systems based on motor abundance. In: Latash ML, Levin MF (eds) Progress in motor control. Effects of age, disorder, and rehabilitation, vol. 3. Human Kinetics, Urbana, pp 97–124 Latash ML, Danion F, Scholz JF, Schöner G (2003) Coordination of multi-element motor systems based on motor abundance. In: Latash ML, Levin MF (eds) Progress in motor control. Effects of age, disorder, and rehabilitation, vol. 3. Human Kinetics, Urbana, pp 97–124
Zurück zum Zitat Lee WA, Buchanan TS, Rogers MW (1987) Effects of arm acceleration and behavioral conditions on the organization of postural adjustments during arm flexion. Exp Brain Res 66:257–270CrossRefPubMed Lee WA, Buchanan TS, Rogers MW (1987) Effects of arm acceleration and behavioral conditions on the organization of postural adjustments during arm flexion. Exp Brain Res 66:257–270CrossRefPubMed
Zurück zum Zitat Massion J (1992) Movement, posture and equilibrium: interaction and coordination. Prog Neurobiol 38:35–56CrossRefPubMed Massion J (1992) Movement, posture and equilibrium: interaction and coordination. Prog Neurobiol 38:35–56CrossRefPubMed
Zurück zum Zitat Olafsdottir H, Yoshida N, Zatsiorsky VM, Latash ML (2005) Anticipatory covariation of finger forces during self-paced and reaction time force production. Neurosci Lett. 381:92–96CrossRefPubMed Olafsdottir H, Yoshida N, Zatsiorsky VM, Latash ML (2005) Anticipatory covariation of finger forces during self-paced and reaction time force production. Neurosci Lett. 381:92–96CrossRefPubMed
Zurück zum Zitat Popescu FC, Rymer WZ (2003) Implications of low mechanical impedance in upper limb reaching motion. Motor Control 7:323–327PubMed Popescu FC, Rymer WZ (2003) Implications of low mechanical impedance in upper limb reaching motion. Motor Control 7:323–327PubMed
Zurück zum Zitat Saltiel P, Wyler-Duda K, D’Avella A, Tresch MC, Bizzi E (2001) Muscle synergies encoded within the spinal cord: evidence from focal intraspinal NMDA tophoresis in the frog. J Neurophysiol 85:605–619PubMed Saltiel P, Wyler-Duda K, D’Avella A, Tresch MC, Bizzi E (2001) Muscle synergies encoded within the spinal cord: evidence from focal intraspinal NMDA tophoresis in the frog. J Neurophysiol 85:605–619PubMed
Zurück zum Zitat Sanger TD, Merzenich MM (2000) Computational model of the role of sensory disorganization in focal task-specific dystonia. J Neurophysiol 84:2458–2464PubMed Sanger TD, Merzenich MM (2000) Computational model of the role of sensory disorganization in focal task-specific dystonia. J Neurophysiol 84:2458–2464PubMed
Zurück zum Zitat Santello M, Flanders M, Soechting JF (1998) Postural hand synergies for tool use. J Neurosci 18:10105–10115PubMed Santello M, Flanders M, Soechting JF (1998) Postural hand synergies for tool use. J Neurosci 18:10105–10115PubMed
Zurück zum Zitat Scholz JP, Schöner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306CrossRefPubMed Scholz JP, Schöner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306CrossRefPubMed
Zurück zum Zitat Schöner G (1995) Recent developments and problems in human movement science and their conceptual implications. Ecol Psychol 8:291–314CrossRef Schöner G (1995) Recent developments and problems in human movement science and their conceptual implications. Ecol Psychol 8:291–314CrossRef
Zurück zum Zitat Shim JK, Lay B, Zatsiorsky VM, Latash ML (2004) Age-related changes in finger coordination in static prehension tasks. J Appl Physiol 97:213–224CrossRefPubMed Shim JK, Lay B, Zatsiorsky VM, Latash ML (2004) Age-related changes in finger coordination in static prehension tasks. J Appl Physiol 97:213–224CrossRefPubMed
Zurück zum Zitat Shim JK, Olafsdottir H, Zatsiorsky VM, Latash ML (2005) The emergence and disappearance of multi-digit synergies during force-production tasks. Exp Brain Res 164:260–270CrossRefPubMed Shim JK, Olafsdottir H, Zatsiorsky VM, Latash ML (2005) The emergence and disappearance of multi-digit synergies during force-production tasks. Exp Brain Res 164:260–270CrossRefPubMed
Zurück zum Zitat Shinohara M, Scholz JP, Zatsiorsky VM, Latash ML (2004) Finger interaction during accurate multi-finger force production tasks in young and elderly persons. Exp Brain Res. 156:282–292CrossRefPubMed Shinohara M, Scholz JP, Zatsiorsky VM, Latash ML (2004) Finger interaction during accurate multi-finger force production tasks in young and elderly persons. Exp Brain Res. 156:282–292CrossRefPubMed
Zurück zum Zitat Ting LH, Macpherson JM (2005) A limited set of muscle synergies for force control during a postural task. J Neurophysiol. 93:609–613CrossRefPubMed Ting LH, Macpherson JM (2005) A limited set of muscle synergies for force control during a postural task. J Neurophysiol. 93:609–613CrossRefPubMed
Zurück zum Zitat Tresch MC, Cheung VCK, D’Avella A (2004) Comparison between synergy extraction methods, SFN abstract 69.6, San Diego Tresch MC, Cheung VCK, D’Avella A (2004) Comparison between synergy extraction methods, SFN abstract 69.6, San Diego
Zurück zum Zitat Tresch MC, Cheung VC, D’Avela A (2006) Matrix factorization algorithms for the identification of muscle synergies: evaluation of simulated and experimental data sets. J Neurophysiol Epub 4 Jan 2006 Tresch MC, Cheung VC, D’Avela A (2006) Matrix factorization algorithms for the identification of muscle synergies: evaluation of simulated and experimental data sets. J Neurophysiol Epub 4 Jan 2006
Zurück zum Zitat Wang Y, Zatsiorsky VM, Latash ML (2005) Muscle synergies involved in shifting the center of pressure while making a first step. Exp Brain Res 167:196–210CrossRefPubMed Wang Y, Zatsiorsky VM, Latash ML (2005) Muscle synergies involved in shifting the center of pressure while making a first step. Exp Brain Res 167:196–210CrossRefPubMed
Zurück zum Zitat Wang Y, Zatsiorsky VM, Latash ML (2006) Muscle synergies involved in preparation to a step made under the self-paced and reaction-time instructions. Clin Neurophysiol 117:41–56CrossRefPubMed Wang Y, Zatsiorsky VM, Latash ML (2006) Muscle synergies involved in preparation to a step made under the self-paced and reaction-time instructions. Clin Neurophysiol 117:41–56CrossRefPubMed
Zurück zum Zitat Winter DA (1990) Biomechanics and motor control of human movement. Wiley, New York Winter DA (1990) Biomechanics and motor control of human movement. Wiley, New York
Zurück zum Zitat Winter DA, Prince F, Frank JS, Powell C, Zabjek KF (1996) Unified theory regarding A/P and M/L balance in quiet stance. J Neurophysiol 75:2334–2343PubMed Winter DA, Prince F, Frank JS, Powell C, Zabjek KF (1996) Unified theory regarding A/P and M/L balance in quiet stance. J Neurophysiol 75:2334–2343PubMed
Zurück zum Zitat Won J, Hogan N (1995) Stability properties of human reaching movements. Exp Brain Res 107:125–136CrossRefPubMed Won J, Hogan N (1995) Stability properties of human reaching movements. Exp Brain Res 107:125–136CrossRefPubMed
Zurück zum Zitat Zatsiorsky VM (2002) Inertial properties of the human body. In: Kinetics of Human Motion, Human Kinetics, Champaign Zatsiorsky VM (2002) Inertial properties of the human body. In: Kinetics of Human Motion, Human Kinetics, Champaign
Metadaten
Titel
Muscle synergies during voluntary body sway: combining across-trials and within-a-trial analyses
verfasst von
Yun Wang
Tadayoshi Asaka
Vladimir M. Zatsiorsky
Mark L. Latash
Publikationsdatum
01.10.2006
Verlag
Springer-Verlag
Erschienen in
Experimental Brain Research / Ausgabe 4/2006
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-006-0513-8

Weitere Artikel der Ausgabe 4/2006

Experimental Brain Research 4/2006 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.