Skip to main content
Erschienen in: Experimental Brain Research 3/2013

01.07.2013 | Research Article

Functional reorganization of soleus H-reflex modulation during stepping after robotic-assisted step training in people with complete and incomplete spinal cord injury

verfasst von: Maria Knikou

Erschienen in: Experimental Brain Research | Ausgabe 3/2013

Einloggen, um Zugang zu erhalten

Abstract

Body weight–supported (BWS) robotic-assisted step training on a motorized treadmill is utilized with the aim to improve walking ability in people after damage to the spinal cord. However, the potential for reorganization of the injured human spinal neuronal circuitry with this intervention is not known. The objectives of this study were to determine changes in the soleus H-reflex modulation pattern and activation profiles of leg muscles during stepping after BWS robotic-assisted step training in people with chronic spinal cord injury (SCI). Fourteen people who had chronic clinically complete, motor complete, and motor incomplete SCI received an average of 45 training sessions, 5 days per week, 1 h per day. The soleus H-reflex was evoked and recorded via conventional methods at similar BWS levels and treadmill speeds before and after training. After BWS robotic-assisted step training, the soleus H-reflex was depressed at late stance, stance-to-swing transition, and swing phase initiation, allowing a smooth transition from stance to swing. The soleus H-reflex remained depressed at early and mid-swing phases of the step cycle promoting a reciprocal activation of ankle flexors and extensors. The spinal reflex circuitry reorganization was, however, more complex, with the soleus H-reflex from the right leg being modulated either in a similar or in an opposite manner to that observed in the left leg at a given phase of the step cycle after training. Last, BWS robotic-assisted step training changed the amplitude and onset of muscle activity during stepping, decreased the step duration, and improved the gait speed. BWS robotic-assisted step training reorganized spinal locomotor neuronal networks promoting a functional amplitude modulation of the soleus H-reflex and thus step progression. These findings support that spinal neuronal networks of persons with clinically complete, motor complete, or motor incomplete SCI have the potential to undergo an endogenous-mediated reorganization, and improve spinal reflex function and walking function with BWS robotic-assisted step training.
Fußnoten
1
In R10 subject, the soleus H-reflex modulation from the right leg was not assessed during stepping due to a pronounced contracture of the ankle joint, which might have masked the soleus H-reflex function.
 
Literatur
Zurück zum Zitat Aizawa H, Inase M, Mushiake H, Shima K, Tanji J (1991) Reorganization of activity in the supplementary motor area associated with motor learning and functional recovery. Exp Brain Res 84:668–671PubMedCrossRef Aizawa H, Inase M, Mushiake H, Shima K, Tanji J (1991) Reorganization of activity in the supplementary motor area associated with motor learning and functional recovery. Exp Brain Res 84:668–671PubMedCrossRef
Zurück zum Zitat Barbeau H, Rossignol S (1987) Recovery of locomotion after chronic spinalization in the adult cat. Brain Res 412:84–95PubMedCrossRef Barbeau H, Rossignol S (1987) Recovery of locomotion after chronic spinalization in the adult cat. Brain Res 412:84–95PubMedCrossRef
Zurück zum Zitat Barbeau H, Wainberg M, Finch L (1987) Description and application of a system for locomotor rehabilitation. Med Biol Eng Comput 25:341–344PubMedCrossRef Barbeau H, Wainberg M, Finch L (1987) Description and application of a system for locomotor rehabilitation. Med Biol Eng Comput 25:341–344PubMedCrossRef
Zurück zum Zitat Baret M, Katz R, Lamy JC, Pénicaud A, Wargon I (2003) Evidence for recurrent inhibition of reciprocal inhibition from soleus to tibialis anterior in man. Exp Brain Res 152:133–136PubMedCrossRef Baret M, Katz R, Lamy JC, Pénicaud A, Wargon I (2003) Evidence for recurrent inhibition of reciprocal inhibition from soleus to tibialis anterior in man. Exp Brain Res 152:133–136PubMedCrossRef
Zurück zum Zitat Barrière G, Leblond H, Provencher J, Rossignol S (2008) Prominent role of the spinal central pattern generator in the recovery of locomotion after partial spinal cord injuries. J Neurosci 28:3976–3987PubMedCrossRef Barrière G, Leblond H, Provencher J, Rossignol S (2008) Prominent role of the spinal central pattern generator in the recovery of locomotion after partial spinal cord injuries. J Neurosci 28:3976–3987PubMedCrossRef
Zurück zum Zitat Behrman AL, Harkema SJ (2000) Locomotor training after human spinal cord injury: a series of case studies. Phys Ther 80:688–700PubMed Behrman AL, Harkema SJ (2000) Locomotor training after human spinal cord injury: a series of case studies. Phys Ther 80:688–700PubMed
Zurück zum Zitat Behrman AL, Lawless-Dixon AR, Davis SB, Bowden MG, Nair P, Phadke C, Hannold EM, Plummer P, Harkema SJ (2005) Locomotor training progression and outcomes after incomplete spinal cord injury. Phys Ther 85:1356–1371PubMed Behrman AL, Lawless-Dixon AR, Davis SB, Bowden MG, Nair P, Phadke C, Hannold EM, Plummer P, Harkema SJ (2005) Locomotor training progression and outcomes after incomplete spinal cord injury. Phys Ther 85:1356–1371PubMed
Zurück zum Zitat Colombo G, Wirz M, Dietz V (2001) Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord 39:252–255PubMedCrossRef Colombo G, Wirz M, Dietz V (2001) Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord 39:252–255PubMedCrossRef
Zurück zum Zitat Côté MP, Gossard JP (2004) Step training-dependent plasticity in spinal cutaneous pathways. J Neurosci 24:11317–11327PubMedCrossRef Côté MP, Gossard JP (2004) Step training-dependent plasticity in spinal cutaneous pathways. J Neurosci 24:11317–11327PubMedCrossRef
Zurück zum Zitat Côté MP, Menard A, Gossard JP (2003) Spinal cats on the treadmill: changes in load pathways. J Neurosci 23:2789–2796PubMed Côté MP, Menard A, Gossard JP (2003) Spinal cats on the treadmill: changes in load pathways. J Neurosci 23:2789–2796PubMed
Zurück zum Zitat Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, Song B, Ao Y, Ichiyama RM, Lavrov I, Roy RR, Sofroniew MV, Edgerton VR (2009) Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 12:1333–1342PubMedCrossRef Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, Song B, Ao Y, Ichiyama RM, Lavrov I, Roy RR, Sofroniew MV, Edgerton VR (2009) Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 12:1333–1342PubMedCrossRef
Zurück zum Zitat De Leon RD, Hodgson JA, Roy RR, Edgerton VR (1998) Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats. J Neurophysiol 79:1329–1340PubMed De Leon RD, Hodgson JA, Roy RR, Edgerton VR (1998) Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats. J Neurophysiol 79:1329–1340PubMed
Zurück zum Zitat Dietz V, Wirtz M, Curt A, Colombo G (1998) Locomotor pattern in paraplegic patients: training effects and recovery of spinal cord function. Spinal Cord 36:380–390PubMedCrossRef Dietz V, Wirtz M, Curt A, Colombo G (1998) Locomotor pattern in paraplegic patients: training effects and recovery of spinal cord function. Spinal Cord 36:380–390PubMedCrossRef
Zurück zum Zitat Dittuno PL, Ditunno JF Jr (2000) Walking index for spinal cord injury (WISCI II): scale revision. Spinal Cord 39:654–656CrossRef Dittuno PL, Ditunno JF Jr (2000) Walking index for spinal cord injury (WISCI II): scale revision. Spinal Cord 39:654–656CrossRef
Zurück zum Zitat Dobkin BH (2000) Spinal and supraspinal plasticity after incomplete spinal cord injury: correlations between functional magnetic resonance imaging and engaged locomotor networks. Prog Brain Res 128:99–111PubMedCrossRef Dobkin BH (2000) Spinal and supraspinal plasticity after incomplete spinal cord injury: correlations between functional magnetic resonance imaging and engaged locomotor networks. Prog Brain Res 128:99–111PubMedCrossRef
Zurück zum Zitat Dobkin B, Apple D, Barbeau H, Basso M, Behrman A, Deforge D, Ditunno J, Dudley G, Elashoff R, Fugate L, Harkema S, Saulino M, Scott M, Spinal Cord Injury Locomotor Trial Group (2006) Weight-supported treadmill versus over-ground training for walking after acute incomplete SCI. Neurology 66:484–493PubMedCrossRef Dobkin B, Apple D, Barbeau H, Basso M, Behrman A, Deforge D, Ditunno J, Dudley G, Elashoff R, Fugate L, Harkema S, Saulino M, Scott M, Spinal Cord Injury Locomotor Trial Group (2006) Weight-supported treadmill versus over-ground training for walking after acute incomplete SCI. Neurology 66:484–493PubMedCrossRef
Zurück zum Zitat Dobkin B, Barbeau H, Deforge D, Ditunno J, Elashoff R, Apple D, Basso M, Behrman A, Harkema S, Saulino M, Scott M, Spinal Cord Injury Locomotor Trial Group (2007) The evolution of walking-related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized Spinal Cord Injury Locomotor Trial. Neurorehabil Neural Repair 21:25–35PubMedCrossRef Dobkin B, Barbeau H, Deforge D, Ditunno J, Elashoff R, Apple D, Basso M, Behrman A, Harkema S, Saulino M, Scott M, Spinal Cord Injury Locomotor Trial Group (2007) The evolution of walking-related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized Spinal Cord Injury Locomotor Trial. Neurorehabil Neural Repair 21:25–35PubMedCrossRef
Zurück zum Zitat Donoghue J, Sanes J (1988) Organization of adult motor cortex representation patterns following neonatal forelimb nerve injury in rats. J Neurosci 8:3221–3232PubMed Donoghue J, Sanes J (1988) Organization of adult motor cortex representation patterns following neonatal forelimb nerve injury in rats. J Neurosci 8:3221–3232PubMed
Zurück zum Zitat Dyhre-Poulsen P, Simonsen EB (2002) H reflexes recorded during locomotion. Adv Exp Med Biol 508:377–383PubMedCrossRef Dyhre-Poulsen P, Simonsen EB (2002) H reflexes recorded during locomotion. Adv Exp Med Biol 508:377–383PubMedCrossRef
Zurück zum Zitat Faist M, Dietz V, Pierrot-Deseilligny E (1996) Modulation, probably presynaptic in origin, of monosynaptic excitation during human gait. Exp Brain Res 109:441–449PubMedCrossRef Faist M, Dietz V, Pierrot-Deseilligny E (1996) Modulation, probably presynaptic in origin, of monosynaptic excitation during human gait. Exp Brain Res 109:441–449PubMedCrossRef
Zurück zum Zitat Ferris DP, Aagaard P, Simonsen EB, Farley CT, Dyhre-Poulsen P (2001) Soleus H-reflex gain in humans walking and running under simulated reduced gravity. J Physiol Lond 530:167–180PubMedCrossRef Ferris DP, Aagaard P, Simonsen EB, Farley CT, Dyhre-Poulsen P (2001) Soleus H-reflex gain in humans walking and running under simulated reduced gravity. J Physiol Lond 530:167–180PubMedCrossRef
Zurück zum Zitat Field-Fote EC (2001) Combined use of body weight support, functional electric stimulation, and treadmill training to improve walking ability in individuals with chronic incomplete spinal cord injury. Arch Phys Med Rehabil 82:818–824PubMedCrossRef Field-Fote EC (2001) Combined use of body weight support, functional electric stimulation, and treadmill training to improve walking ability in individuals with chronic incomplete spinal cord injury. Arch Phys Med Rehabil 82:818–824PubMedCrossRef
Zurück zum Zitat Field-Fote EC, Roach KE (2011) Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: a randomized clinical trial. Phys Ther 91:48–60PubMedCrossRef Field-Fote EC, Roach KE (2011) Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: a randomized clinical trial. Phys Ther 91:48–60PubMedCrossRef
Zurück zum Zitat Frigon A, Rossignol S (2008) Short-latency crossed inhibitory responses in extensor muscles during locomotion in the cat. J Neurophysiol 99:989–998PubMedCrossRef Frigon A, Rossignol S (2008) Short-latency crossed inhibitory responses in extensor muscles during locomotion in the cat. J Neurophysiol 99:989–998PubMedCrossRef
Zurück zum Zitat Goldshmit Y, Lythgo N, Gales MP, Tyrnley AM (2008) Treadmill training after spinal cord hemisection in mice promotes axonal sprouting and synapse formation and improves motor recovery. J Neurotrauma 25:449–466PubMedCrossRef Goldshmit Y, Lythgo N, Gales MP, Tyrnley AM (2008) Treadmill training after spinal cord hemisection in mice promotes axonal sprouting and synapse formation and improves motor recovery. J Neurotrauma 25:449–466PubMedCrossRef
Zurück zum Zitat Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Mountcastle VB, Brookhart JM (eds) Handbook of Physiology. The Nervous System II. American Physiological Society, Bethesda Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Mountcastle VB, Brookhart JM (eds) Handbook of Physiology. The Nervous System II. American Physiological Society, Bethesda
Zurück zum Zitat Hajela N, Mummidisetty CK, Smith AC, Knikou M (2013) Corticospinal reorganization after locomotor training in a person with motor incomplete paraplegia. Biomed Res Int 2013:516427PubMed Hajela N, Mummidisetty CK, Smith AC, Knikou M (2013) Corticospinal reorganization after locomotor training in a person with motor incomplete paraplegia. Biomed Res Int 2013:516427PubMed
Zurück zum Zitat Jankowska E, Hammar I (2002) Spinal interneurons: how can studies in animals contribute to the understanding of spinal interneuronal systems in man? Brain Res Rev 40:19–28PubMedCrossRef Jankowska E, Hammar I (2002) Spinal interneurons: how can studies in animals contribute to the understanding of spinal interneuronal systems in man? Brain Res Rev 40:19–28PubMedCrossRef
Zurück zum Zitat Jones T, Schallert T (1992) Overgrowth and pruning of dendrites in adult rats recovering from neocortical damage. Brain Res 581:156–160PubMedCrossRef Jones T, Schallert T (1992) Overgrowth and pruning of dendrites in adult rats recovering from neocortical damage. Brain Res 581:156–160PubMedCrossRef
Zurück zum Zitat Knikou M (2005) Effects of hip angle changes on intersegmental spinal coupling in human spinal cord injury. Exp Brain Res 167:381–393PubMedCrossRef Knikou M (2005) Effects of hip angle changes on intersegmental spinal coupling in human spinal cord injury. Exp Brain Res 167:381–393PubMedCrossRef
Zurück zum Zitat Knikou M (2008) The H-reflex as a probe: pathways and pitfalls. J Neurosci Methods 171:1–12PubMedCrossRef Knikou M (2008) The H-reflex as a probe: pathways and pitfalls. J Neurosci Methods 171:1–12PubMedCrossRef
Zurück zum Zitat Knikou M (2010a) Neural control of locomotion and training-induced plasticity after spinal and cerebral lesions. Clin Neurophysiol 121:1655–1668PubMedCrossRef Knikou M (2010a) Neural control of locomotion and training-induced plasticity after spinal and cerebral lesions. Clin Neurophysiol 121:1655–1668PubMedCrossRef
Zurück zum Zitat Knikou M (2010b) Plantar cutaneous afferents normalize the reflex modulation patterns during assisted stepping in chronic human spinal cord injury. J Neurophysiol 103:1304–1314PubMedCrossRef Knikou M (2010b) Plantar cutaneous afferents normalize the reflex modulation patterns during assisted stepping in chronic human spinal cord injury. J Neurophysiol 103:1304–1314PubMedCrossRef
Zurück zum Zitat Knikou M, Conway BA (2001) Modulation of soleus H-reflex following ipsilateral mechanical loading of the sole of the foot in normal and complete spinal cord injured human subjects. Neurosci Lett 303:107–110PubMedCrossRef Knikou M, Conway BA (2001) Modulation of soleus H-reflex following ipsilateral mechanical loading of the sole of the foot in normal and complete spinal cord injured human subjects. Neurosci Lett 303:107–110PubMedCrossRef
Zurück zum Zitat Knikou M, Mummidisetty CK (2011) Reduced reciprocal inhibition during assisted stepping in human spinal cord injury. Exp Neurol 231:104–112PubMedCrossRef Knikou M, Mummidisetty CK (2011) Reduced reciprocal inhibition during assisted stepping in human spinal cord injury. Exp Neurol 231:104–112PubMedCrossRef
Zurück zum Zitat Knikou M, Angeli CA, Ferreira CK, Harkema SJ (2009a) Soleus H-reflex modulation during body weight support treadmill walking in spinal cord intact and injured subjects. Exp Brain Res 193:397–407PubMedCrossRef Knikou M, Angeli CA, Ferreira CK, Harkema SJ (2009a) Soleus H-reflex modulation during body weight support treadmill walking in spinal cord intact and injured subjects. Exp Brain Res 193:397–407PubMedCrossRef
Zurück zum Zitat Knikou M, Angeli CA, Ferreira CK, Harkema SJ (2009b) Soleus H-reflex gain, threshold, and amplitude as function of body posture and load in spinal cord intact and injured subjects. Int J Neurosci 119:2056–2073PubMedCrossRef Knikou M, Angeli CA, Ferreira CK, Harkema SJ (2009b) Soleus H-reflex gain, threshold, and amplitude as function of body posture and load in spinal cord intact and injured subjects. Int J Neurosci 119:2056–2073PubMedCrossRef
Zurück zum Zitat Knikou M, Hajela N, Mummidisetty CK, Xiao M, Smith AC (2011) Soleus H-reflex phase-dependent modulation is preserved during stepping within a robotic exoskeleton. Clin Neurophysiol 122:1396–1404PubMedCrossRef Knikou M, Hajela N, Mummidisetty CK, Xiao M, Smith AC (2011) Soleus H-reflex phase-dependent modulation is preserved during stepping within a robotic exoskeleton. Clin Neurophysiol 122:1396–1404PubMedCrossRef
Zurück zum Zitat Lamy JC, Iglesias C, Lackmy A, Nielsen JB, Katz R, Marchand-Pauvert V (2008) Modulation of recurrent inhibition from knee extensors to ankle motoneurons during human walking. J Physiol Lond 586:5931–5946PubMedCrossRef Lamy JC, Iglesias C, Lackmy A, Nielsen JB, Katz R, Marchand-Pauvert V (2008) Modulation of recurrent inhibition from knee extensors to ankle motoneurons during human walking. J Physiol Lond 586:5931–5946PubMedCrossRef
Zurück zum Zitat Lavoie BA, Devanne H, Capaday C (1997) Differential control of reciprocal inhibition during walking versus postural and voluntary motor tasks in humans. J Neurophysiol 78:429–438PubMed Lavoie BA, Devanne H, Capaday C (1997) Differential control of reciprocal inhibition during walking versus postural and voluntary motor tasks in humans. J Neurophysiol 78:429–438PubMed
Zurück zum Zitat Lovely RG, Gregor RJ, Roy RR, Edgerton VR (1986) Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp Neurol 92:421–435PubMedCrossRef Lovely RG, Gregor RJ, Roy RR, Edgerton VR (1986) Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp Neurol 92:421–435PubMedCrossRef
Zurück zum Zitat Maier IC, Schwab ME (2006) Sprouting, regeneration and circuit formation in the injured spinal cord: factors and activity. Philos Trans R Soc Lond B Biol Sci 361:1611–1634PubMedCrossRef Maier IC, Schwab ME (2006) Sprouting, regeneration and circuit formation in the injured spinal cord: factors and activity. Philos Trans R Soc Lond B Biol Sci 361:1611–1634PubMedCrossRef
Zurück zum Zitat Marino RJ, Barros T, Biering-Sorensen F, Burns SP, Donovan WH, Graves DE, Haak M, Hudson LM, Priebe MM, ASIA Neurological Standards Committee 2002 (2003) International standards for neurological classification of spinal cord injury. J Spinal Cord Med 26(Suppl 1):S50–S56PubMed Marino RJ, Barros T, Biering-Sorensen F, Burns SP, Donovan WH, Graves DE, Haak M, Hudson LM, Priebe MM, ASIA Neurological Standards Committee 2002 (2003) International standards for neurological classification of spinal cord injury. J Spinal Cord Med 26(Suppl 1):S50–S56PubMed
Zurück zum Zitat Mummidisetty CK, Smith AC, Knikou M (2013) Modulation of reciprocal and presynaptic inhibition during robotic assisted stepping in humans. Clin Neurophysiol 124:557–664PubMedCrossRef Mummidisetty CK, Smith AC, Knikou M (2013) Modulation of reciprocal and presynaptic inhibition during robotic assisted stepping in humans. Clin Neurophysiol 124:557–664PubMedCrossRef
Zurück zum Zitat Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM (1996) Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci 16:785–807PubMed Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM (1996) Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci 16:785–807PubMed
Zurück zum Zitat Nudo RJ, Plautz EJ, Milliken GW (1997) Adaptive plasticity in primate motor cortex as a consequence of behavioural and neuronal injury. Seminars Neurosci 9:13–23CrossRef Nudo RJ, Plautz EJ, Milliken GW (1997) Adaptive plasticity in primate motor cortex as a consequence of behavioural and neuronal injury. Seminars Neurosci 9:13–23CrossRef
Zurück zum Zitat Nudo RJ, Plautz EJ, Frost SB (2001) Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve 24:1000–1019PubMedCrossRef Nudo RJ, Plautz EJ, Frost SB (2001) Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve 24:1000–1019PubMedCrossRef
Zurück zum Zitat Petersen N, Morita H, Nielsen J (1999) Modulation of reciprocal inhibition between ankle extensors and flexors during walking in man. J Physiol Lond 520:605–619PubMedCrossRef Petersen N, Morita H, Nielsen J (1999) Modulation of reciprocal inhibition between ankle extensors and flexors during walking in man. J Physiol Lond 520:605–619PubMedCrossRef
Zurück zum Zitat Roby-Brami A, Bussel B (1990) Effects of FRA stimulation on the soleus H-reflex in patients with a complete spinal cord lesion: evidence for presynaptic inhibition of Ia transmission. Exp Brain Res 81:593–601PubMedCrossRef Roby-Brami A, Bussel B (1990) Effects of FRA stimulation on the soleus H-reflex in patients with a complete spinal cord lesion: evidence for presynaptic inhibition of Ia transmission. Exp Brain Res 81:593–601PubMedCrossRef
Zurück zum Zitat Rossignol S, Dubuc R, Gossard JP (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86:89–154PubMedCrossRef Rossignol S, Dubuc R, Gossard JP (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86:89–154PubMedCrossRef
Zurück zum Zitat Rossignol S, Schwab M, Schwartz M, Fehlings MG (2007) Spinal cord injury: time to move? J Neurosci 27:11782–11792PubMedCrossRef Rossignol S, Schwab M, Schwartz M, Fehlings MG (2007) Spinal cord injury: time to move? J Neurosci 27:11782–11792PubMedCrossRef
Zurück zum Zitat Scivoletto G, Tamburella F, Laurenza L, Foti C, Ditunno JF, Molinari M (2011) Validity and reliability of the 10-m walk test and the 6-min walk test in spinal cord injury patients. Spinal Cord 49:736–740PubMedCrossRef Scivoletto G, Tamburella F, Laurenza L, Foti C, Ditunno JF, Molinari M (2011) Validity and reliability of the 10-m walk test and the 6-min walk test in spinal cord injury patients. Spinal Cord 49:736–740PubMedCrossRef
Zurück zum Zitat Simonsen EB, Dyhre-Poulsen P (2011) Test-retest reliability of the soleus H-reflex excitability measured during human walking. Hum Mov Sci 30:333–340PubMedCrossRef Simonsen EB, Dyhre-Poulsen P (2011) Test-retest reliability of the soleus H-reflex excitability measured during human walking. Hum Mov Sci 30:333–340PubMedCrossRef
Zurück zum Zitat Tansey KE, McKay WB, Kakulas BA (2012) Restorative neurology: consideration of the new anatomy and physiology of the injured nervous system. Clin Neurol Neurosurg 114:436–440PubMedCrossRef Tansey KE, McKay WB, Kakulas BA (2012) Restorative neurology: consideration of the new anatomy and physiology of the injured nervous system. Clin Neurol Neurosurg 114:436–440PubMedCrossRef
Zurück zum Zitat Thomas SL, Gorassini MA (2005) Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury. J Neurophysiol 94:2844–2855PubMedCrossRef Thomas SL, Gorassini MA (2005) Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury. J Neurophysiol 94:2844–2855PubMedCrossRef
Zurück zum Zitat Wernig A, Müller S, Nanassy A, Cagol E (1995) Laufband therapy based on rules of spinal locomotion is effective in spinal cord injured persons. Eur J Neurosci 7:823–829PubMedCrossRef Wernig A, Müller S, Nanassy A, Cagol E (1995) Laufband therapy based on rules of spinal locomotion is effective in spinal cord injured persons. Eur J Neurosci 7:823–829PubMedCrossRef
Zurück zum Zitat Whelan PJ, Hiebert GW, Pearson KG (1995) Plasticity of the extensor group I pathway controlling the stance to swing transition in the cat. J Neurophysiol 74:2782–2787PubMed Whelan PJ, Hiebert GW, Pearson KG (1995) Plasticity of the extensor group I pathway controlling the stance to swing transition in the cat. J Neurophysiol 74:2782–2787PubMed
Zurück zum Zitat Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG (2005) Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehab 86:672–680CrossRef Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG (2005) Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehab 86:672–680CrossRef
Zurück zum Zitat Wolpaw JR (2010) What can the spinal cord teach us about learning and memory? Neuroscientist 16:532–549PubMedCrossRef Wolpaw JR (2010) What can the spinal cord teach us about learning and memory? Neuroscientist 16:532–549PubMedCrossRef
Zurück zum Zitat Wolpaw JR, Carp JS (2006) Plasticity from muscle to brain. Progr Neurobiol 78:233–263CrossRef Wolpaw JR, Carp JS (2006) Plasticity from muscle to brain. Progr Neurobiol 78:233–263CrossRef
Zurück zum Zitat Wolpaw JR, Tennissen AM (2001) Activity-dependent spinal cord plasticity in health and disease. Annu Rev Neurosci 24:807–843PubMedCrossRef Wolpaw JR, Tennissen AM (2001) Activity-dependent spinal cord plasticity in health and disease. Annu Rev Neurosci 24:807–843PubMedCrossRef
Zurück zum Zitat Xerri C, Merzenich M, Peterson B, Jenkins W (1998) Plasticity of primary somatosensory cortex paralleling sensorimotor skill recovery from stroke in adult monkeys. J Neurophysiol 79:2119–2148PubMed Xerri C, Merzenich M, Peterson B, Jenkins W (1998) Plasticity of primary somatosensory cortex paralleling sensorimotor skill recovery from stroke in adult monkeys. J Neurophysiol 79:2119–2148PubMed
Zurück zum Zitat Yang JF, Fung J, Edamura M, Blunt R, Stein RB, Barbeau H (1991) H-reflex modulation during walking in spastic paretic subjects. Can J Neurol Sci 18:443–452PubMed Yang JF, Fung J, Edamura M, Blunt R, Stein RB, Barbeau H (1991) H-reflex modulation during walking in spastic paretic subjects. Can J Neurol Sci 18:443–452PubMed
Zurück zum Zitat Yang JF, Lamont EV, Pang MY (2005) Split-belt treadmill stepping in infants suggests autonomous pattern generators for the left and right leg in humans. J Neurosci 25:6869–6876PubMedCrossRef Yang JF, Lamont EV, Pang MY (2005) Split-belt treadmill stepping in infants suggests autonomous pattern generators for the left and right leg in humans. J Neurosci 25:6869–6876PubMedCrossRef
Metadaten
Titel
Functional reorganization of soleus H-reflex modulation during stepping after robotic-assisted step training in people with complete and incomplete spinal cord injury
verfasst von
Maria Knikou
Publikationsdatum
01.07.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Experimental Brain Research / Ausgabe 3/2013
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-013-3560-y

Weitere Artikel der Ausgabe 3/2013

Experimental Brain Research 3/2013 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.