Skip to main content
Erschienen in: Experimental Brain Research 10/2014

01.10.2014 | Research Article

Velocity-selective adaptation of the horizontal and cross-axis vestibulo-ocular reflex in the mouse

verfasst von: Patrick P. Hübner, Serajul I. Khan, Americo A. Migliaccio

Erschienen in: Experimental Brain Research | Ausgabe 10/2014

Einloggen, um Zugang zu erhalten

Abstract

One commonly observed phenomenon of vestibulo-ocular reflex (VOR) adaptation is a frequency-selective change in gain (eye velocity/head velocity) and phase (relative timing between the vestibular stimulus and response) based on the frequency content of the adaptation training stimulus. The neural mechanism behind this type of adaptation is not clear. Our aim was to determine whether there were other parameter-selective effects on VOR adaptation, specifically velocity-selective and acceleration-selective changes in the horizontal VOR gain and phase. We also wanted to determine whether parameter selectivity was also in place for cross-axis adaptation training (a visual–vestibular training stimulus that elicits a vestibular-evoked torsional eye movement during horizontal head rotations). We measured VOR gain and phase in 17 C57BL/6 mice during baseline (no adaptation training) and after gain-increase, gain-decrease and cross-axis adaptation training using a sinusoidal visual–vestibular (mismatch) stimulus with whole-body rotations (vestibular stimulus) with peak velocity 20 and 50°/s both with a fixed frequency of 0.5 Hz. Our results show pronounced velocity selectivity of VOR adaptation. The difference in horizontal VOR gain after gain-increase versus gain-decrease adaptation was maximal when the sinusoidal testing stimulus matched the adaptation training stimulus peak velocity. We also observed similar velocity selectivity after cross-axis adaptation training. Our data suggest that frequency selectivity could be a manifestation of both velocity and acceleration selectivity because when one of these is absent, e.g. acceleration selectivity in the mouse, frequency selectivity is also reduced.
Literatur
Zurück zum Zitat Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61 CrossRef Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61 CrossRef
Zurück zum Zitat Angelaki DE, Dickman JD (2000) Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses. J Neurophysiol 84:2113–2132PubMed Angelaki DE, Dickman JD (2000) Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses. J Neurophysiol 84:2113–2132PubMed
Zurück zum Zitat Angelaki DE, Hess BJM (1998) Visually induced adaptation in three-dimensional organization of primate vestibuloocular reflex. J Neurophysiol 79:791–807PubMed Angelaki DE, Hess BJM (1998) Visually induced adaptation in three-dimensional organization of primate vestibuloocular reflex. J Neurophysiol 79:791–807PubMed
Zurück zum Zitat Buettner UW, Büttner U, Henn V (1978) Transfer characteristics of neurons in vestibular nuclei of the alert monkey. J Neurophysiol 41:1614–1628PubMed Buettner UW, Büttner U, Henn V (1978) Transfer characteristics of neurons in vestibular nuclei of the alert monkey. J Neurophysiol 41:1614–1628PubMed
Zurück zum Zitat Clendaniel RA, Lasker DM, Minor LB (2001) Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. IV. Responses after spectacle-induced adaptation. J Neurophysiol 86:1594–1611PubMed Clendaniel RA, Lasker DM, Minor LB (2001) Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. IV. Responses after spectacle-induced adaptation. J Neurophysiol 86:1594–1611PubMed
Zurück zum Zitat Clendaniel RA, Lasker DM, Minor LB (2002) Differential adaptation of the linear and nonlinear components of the horizontal vestibuloocular reflex in squirrel monkeys. J Neurophysiol 88:3534–3540. doi:10.1152/jn.00404.2002 PubMedCrossRef Clendaniel RA, Lasker DM, Minor LB (2002) Differential adaptation of the linear and nonlinear components of the horizontal vestibuloocular reflex in squirrel monkeys. J Neurophysiol 88:3534–3540. doi:10.​1152/​jn.​00404.​2002 PubMedCrossRef
Zurück zum Zitat De Zeeuw CI, Hansel C, Bian F et al (1998) Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuron 20:495–508PubMedCrossRef De Zeeuw CI, Hansel C, Bian F et al (1998) Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuron 20:495–508PubMedCrossRef
Zurück zum Zitat Dean P, Porrill J, Ekerot C-F, Jörntell H (2009) The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat Rev Neurosci 11:30–43. doi:10.1038/nrn2756 PubMedCrossRef Dean P, Porrill J, Ekerot C-F, Jörntell H (2009) The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat Rev Neurosci 11:30–43. doi:10.​1038/​nrn2756 PubMedCrossRef
Zurück zum Zitat Fujita M (1982) Simulation of adaptive modification of the vestibulo-ocular reflex with an adaptive filter model of the cerebellum. Biol Cybern 45:207–214PubMedCrossRef Fujita M (1982) Simulation of adaptive modification of the vestibulo-ocular reflex with an adaptive filter model of the cerebellum. Biol Cybern 45:207–214PubMedCrossRef
Zurück zum Zitat Godaux E, Halleux J, Gobert C (1983) Adaptive change of the vestibulo-ocular reflex in the cat: the effects of a long-term frequency-selective procedure. Exp Brain Res 49:28–34PubMedCrossRef Godaux E, Halleux J, Gobert C (1983) Adaptive change of the vestibulo-ocular reflex in the cat: the effects of a long-term frequency-selective procedure. Exp Brain Res 49:28–34PubMedCrossRef
Zurück zum Zitat Holstein GR, Rabbitt RD, Martinelli GP et al (2004) Convergence of excitatory and inhibitory hair cell transmitters shapes vestibular afferent responses. Proc Natl Acad Sci USA 101(44):15766–15771PubMedCrossRefPubMedCentral Holstein GR, Rabbitt RD, Martinelli GP et al (2004) Convergence of excitatory and inhibitory hair cell transmitters shapes vestibular afferent responses. Proc Natl Acad Sci USA 101(44):15766–15771PubMedCrossRefPubMedCentral
Zurück zum Zitat Hullar TE, Santina Della CC, Hirvonen T et al (2005) Responses of irregularly discharging chinchilla semicircular canal vestibular-nerve afferents during high-frequency head rotations. J Neurophysiol 93:2777–2786. doi:10.1152/jn.01002.2004 PubMedCrossRef Hullar TE, Santina Della CC, Hirvonen T et al (2005) Responses of irregularly discharging chinchilla semicircular canal vestibular-nerve afferents during high-frequency head rotations. J Neurophysiol 93:2777–2786. doi:10.​1152/​jn.​01002.​2004 PubMedCrossRef
Zurück zum Zitat Iwashita M, Kanai R, Funabiki K et al (2001) Dynamic properties, interactions and adaptive modifications of vestibulo-ocular reflex and optokinetic response in mice. Neurosci Res 39:299–311PubMedCrossRef Iwashita M, Kanai R, Funabiki K et al (2001) Dynamic properties, interactions and adaptive modifications of vestibulo-ocular reflex and optokinetic response in mice. Neurosci Res 39:299–311PubMedCrossRef
Zurück zum Zitat Jones GM, Milsum JH (1971) Frequency-response analysis of central vestibular unit activity resulting from rotational stimulation of the semicircular canals. J Physiol 219(1):191–215PubMedPubMedCentral Jones GM, Milsum JH (1971) Frequency-response analysis of central vestibular unit activity resulting from rotational stimulation of the semicircular canals. J Physiol 219(1):191–215PubMedPubMedCentral
Zurück zum Zitat Khater TT, Quinn KJ, Pena J et al (1993) The latency of the cat vestibulo-ocular reflex before and after short- and long-term adaptation. Exp Brain Res 94:16–32PubMedCrossRef Khater TT, Quinn KJ, Pena J et al (1993) The latency of the cat vestibulo-ocular reflex before and after short- and long-term adaptation. Exp Brain Res 94:16–32PubMedCrossRef
Zurück zum Zitat Lasker DM, Hullar TE, Minor LB (2000) Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. III. Responses after labyrinthectomy. J Neurophysiol 83:2482–2496PubMed Lasker DM, Hullar TE, Minor LB (2000) Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. III. Responses after labyrinthectomy. J Neurophysiol 83:2482–2496PubMed
Zurück zum Zitat Lisberger SG, Miles FA, Optican LM (1983) Frequency-selective adaptation: evidence for channels in the vestibulo-ocular reflex? J Neurosci 3:1234–1244PubMed Lisberger SG, Miles FA, Optican LM (1983) Frequency-selective adaptation: evidence for channels in the vestibulo-ocular reflex? J Neurosci 3:1234–1244PubMed
Zurück zum Zitat Minor LB, Lasker DM, Backous DD, Hullar TE (1999) Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. I. Normal responses. J Neurophysiol 82:1254–1270PubMed Minor LB, Lasker DM, Backous DD, Hullar TE (1999) Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. I. Normal responses. J Neurophysiol 82:1254–1270PubMed
Zurück zum Zitat Raymond JL, Lisberger SG (1996) Behavioral analysis of signals that guide learned changes in the amplitude and dynamics of the vestibulo-ocular reflex. J Neurosci 16:7791–7802PubMed Raymond JL, Lisberger SG (1996) Behavioral analysis of signals that guide learned changes in the amplitude and dynamics of the vestibulo-ocular reflex. J Neurosci 16:7791–7802PubMed
Zurück zum Zitat Sadeghi SG, Minor LB, Cullen KE (2006) Dynamics of the horizontal vestibuloocular reflex after unilateral labyrinthectomy: response to high frequency, high acceleration, and high velocity rotations. Exp Brain Res 175:471–484. doi:10.1007/s00221-006-0567-7 PubMedCrossRef Sadeghi SG, Minor LB, Cullen KE (2006) Dynamics of the horizontal vestibuloocular reflex after unilateral labyrinthectomy: response to high frequency, high acceleration, and high velocity rotations. Exp Brain Res 175:471–484. doi:10.​1007/​s00221-006-0567-7 PubMedCrossRef
Zurück zum Zitat Schneider LW, Anderson DJ (1976) Transfer characteristics of first and second order lateral canal vestibular neurons in gerbil. Brain Res 112:61–76PubMedCrossRef Schneider LW, Anderson DJ (1976) Transfer characteristics of first and second order lateral canal vestibular neurons in gerbil. Brain Res 112:61–76PubMedCrossRef
Zurück zum Zitat Serafin M, Ris L, Bernard P et al (1999) Neuronal correlates of vestibulo-ocular reflex adaptation in the alert guinea-pig. Eur J Neurosci 11:1827–1830PubMedCrossRef Serafin M, Ris L, Bernard P et al (1999) Neuronal correlates of vestibulo-ocular reflex adaptation in the alert guinea-pig. Eur J Neurosci 11:1827–1830PubMedCrossRef
Zurück zum Zitat Shelhamer M, Robinson DA, Tan HS (1992) Context-specific adaptation of the gain of the vestibulo-ocular reflex in humans. J Vestib Res 2:89–96PubMed Shelhamer M, Robinson DA, Tan HS (1992) Context-specific adaptation of the gain of the vestibulo-ocular reflex in humans. J Vestib Res 2:89–96PubMed
Zurück zum Zitat Simpson JI, Leonard CS, Soodak RE (1988) The accessory optic system of rabbit. II. Spatial organization of direction selectivity. J Neurophysiol 60:2055–2072PubMed Simpson JI, Leonard CS, Soodak RE (1988) The accessory optic system of rabbit. II. Spatial organization of direction selectivity. J Neurophysiol 60:2055–2072PubMed
Zurück zum Zitat Stahl JS, van Alphen AM, De Zeeuw CI (2000) A comparison of video and magnetic search coil recordings of mouse eye movements. J Neurosci Methods 99:101–110PubMedCrossRef Stahl JS, van Alphen AM, De Zeeuw CI (2000) A comparison of video and magnetic search coil recordings of mouse eye movements. J Neurosci Methods 99:101–110PubMedCrossRef
Zurück zum Zitat Watanabe S, Hattori K, Koizuka I (2003) Flexibility of vestibulo-ocular reflex adaptation to modified visual input in human. Auris Nasus Larynx 30(Suppl):S29–S34PubMedCrossRef Watanabe S, Hattori K, Koizuka I (2003) Flexibility of vestibulo-ocular reflex adaptation to modified visual input in human. Auris Nasus Larynx 30(Suppl):S29–S34PubMedCrossRef
Metadaten
Titel
Velocity-selective adaptation of the horizontal and cross-axis vestibulo-ocular reflex in the mouse
verfasst von
Patrick P. Hübner
Serajul I. Khan
Americo A. Migliaccio
Publikationsdatum
01.10.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Experimental Brain Research / Ausgabe 10/2014
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-014-3988-8

Weitere Artikel der Ausgabe 10/2014

Experimental Brain Research 10/2014 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.