Skip to main content
Erschienen in: Experimental Brain Research 8/2017

01.08.2017 | Review

Online adjustments of leg movements in healthy young and old

verfasst von: Zrinka Potocanac, Jacques Duysens

Erschienen in: Experimental Brain Research | Ausgabe 8/2017

Einloggen, um Zugang zu erhalten

Abstract

Online movement adjustments are crucial for daily life. This is especially true for leg movements in relation to gait, where failed adjustments can lead to falls, especially in elderly. However, most research has focused on reach adjustments following changes in target location. This arm research reports two categories of online adjustments (see Gaveau et al., Neuropsychologia 55:25–40, 2014 for review). Small, frequently undetected, target location shifts invoke fast, automatic adjustments, usually without awareness. In contrast, large target location shifts can lead to slow, voluntary adjustments. These fast and slow adjustments presumably rely on different neural networks, with a possible role for subcortical pathways for the fast responses. Do leg movement adjustments also fall into these two categories? We review the literature on leg movement adjustments and show that it is indeed possible to discern fast and slow adjustments. More specifically, we provide an overview of studies showing adjustments during step preparation, initiation, unobstructed, and obstructed gait. Fast adjustments were found both during stepping and gait. In the extreme case, even step adjustments appear to be further modifiable online, e.g., when avoiding obstacles during tripping. In older adults, movement adjustments are generally slower and of smaller magnitude, consistent with a greater risk of falling. However, fast responses seem less affected by aging, consistent with the idea of independent parallel mechanisms controlling movement adjustments (Gomi, Curr Opin Neurobiol 18:558–567, 2008). Finally, putative neural pathways are discussed.
Literatur
Zurück zum Zitat Archambault PS, Caminiti R, Battaglia-Mayer A (2009) Cortical mechanisms for online control of hand movement trajectory: the role of the posterior parietal cortex. Cereb Cortex 19:2848–2864. doi:10.1093/cercor/bhp058 PubMedCrossRef Archambault PS, Caminiti R, Battaglia-Mayer A (2009) Cortical mechanisms for online control of hand movement trajectory: the role of the posterior parietal cortex. Cereb Cortex 19:2848–2864. doi:10.​1093/​cercor/​bhp058 PubMedCrossRef
Zurück zum Zitat Bridgeman B, Lewis S, Heit G, Nagle M (1979) Relation between cognitive and motor-oriented systems of visual position perception. J Exp Psychol Hum Percept Perform 5:692–700PubMedCrossRef Bridgeman B, Lewis S, Heit G, Nagle M (1979) Relation between cognitive and motor-oriented systems of visual position perception. J Exp Psychol Hum Percept Perform 5:692–700PubMedCrossRef
Zurück zum Zitat Brooks JX, Carriot J, Cullen KE (2015) Learning to expect the unexpected: rapid updating in primate cerebellum during voluntary self-motion. Nat Neurosci 18:1–10. doi:10.1038/nn.4077 CrossRef Brooks JX, Carriot J, Cullen KE (2015) Learning to expect the unexpected: rapid updating in primate cerebellum during voluntary self-motion. Nat Neurosci 18:1–10. doi:10.​1038/​nn.​4077 CrossRef
Zurück zum Zitat Chen HC, Ashton-Miller JA, Alexander NB, Schultz AB (1991) Stepping over obstacles: gait patterns of healthy young and old adults. J Gerontol 46:M196–M203PubMedCrossRef Chen HC, Ashton-Miller JA, Alexander NB, Schultz AB (1991) Stepping over obstacles: gait patterns of healthy young and old adults. J Gerontol 46:M196–M203PubMedCrossRef
Zurück zum Zitat Chen HC, Ashton-Miller JA, Alexander NB, Schultz AB (1994a) Age effects on strategies used to avoid obstacles. Gait Posture 2:139–146CrossRef Chen HC, Ashton-Miller JA, Alexander NB, Schultz AB (1994a) Age effects on strategies used to avoid obstacles. Gait Posture 2:139–146CrossRef
Zurück zum Zitat Chen HC, Ashton-Miller JA, Alexander NB, Schultz AB (1994b) Effects of age and available response time on ability to step over an obstacle. J Gerontol 49:M227–M233PubMedCrossRef Chen HC, Ashton-Miller JA, Alexander NB, Schultz AB (1994b) Effects of age and available response time on ability to step over an obstacle. J Gerontol 49:M227–M233PubMedCrossRef
Zurück zum Zitat Chen HC, Schultz AB, Ashton-Miller JA et al (1996) Stepping over obstacles: dividing attention impairs performance of old more than young adults. J Gerontol A Biol Sci Med Sci 51:M116–M122PubMedCrossRef Chen HC, Schultz AB, Ashton-Miller JA et al (1996) Stepping over obstacles: dividing attention impairs performance of old more than young adults. J Gerontol A Biol Sci Med Sci 51:M116–M122PubMedCrossRef
Zurück zum Zitat Day BL, Brown P (2001) Evidence for subcortical involvement in the visual control of human reaching. Brain 124:1832–1840PubMedCrossRef Day BL, Brown P (2001) Evidence for subcortical involvement in the visual control of human reaching. Brain 124:1832–1840PubMedCrossRef
Zurück zum Zitat Day BL, Lyon IN (2000) Voluntary modification of automatic arm movements evoked by motion of a visual target. Exp Brain Res 130:159–168PubMedCrossRef Day BL, Lyon IN (2000) Voluntary modification of automatic arm movements evoked by motion of a visual target. Exp Brain Res 130:159–168PubMedCrossRef
Zurück zum Zitat Day BL, Thompson PD, Harding AE, Marsden CD (1998) Influence of vision on upper limb reaching movements in patients with cerebellar ataxia. Brain 121(Pt 2):357–372PubMedCrossRef Day BL, Thompson PD, Harding AE, Marsden CD (1998) Influence of vision on upper limb reaching movements in patients with cerebellar ataxia. Brain 121(Pt 2):357–372PubMedCrossRef
Zurück zum Zitat Desmurget M, Grafton ST (2000) Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4:423–431PubMedCrossRef Desmurget M, Grafton ST (2000) Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4:423–431PubMedCrossRef
Zurück zum Zitat Desmurget M, Epstein CM, Turner RS et al (1999) Role of the posterior parietal cortex in updating reaching movements to a visual target. Nat Neurosci 2:563–567. doi:10.1038/9219 PubMedCrossRef Desmurget M, Epstein CM, Turner RS et al (1999) Role of the posterior parietal cortex in updating reaching movements to a visual target. Nat Neurosci 2:563–567. doi:10.​1038/​9219 PubMedCrossRef
Zurück zum Zitat Desmurget M, Gréa H, Grethe JS et al (2001) Functional anatomy of nonvisual feedback loops during reaching: a positron emission tomography study. J Neurosci 21:2919–2928PubMed Desmurget M, Gréa H, Grethe JS et al (2001) Functional anatomy of nonvisual feedback loops during reaching: a positron emission tomography study. J Neurosci 21:2919–2928PubMed
Zurück zum Zitat Dietz V, Quintern J, Berger W (1986) Stumbling reactions in man: release of a ballistic movement pattern. Brain Res 362:355–357PubMedCrossRef Dietz V, Quintern J, Berger W (1986) Stumbling reactions in man: release of a ballistic movement pattern. Brain Res 362:355–357PubMedCrossRef
Zurück zum Zitat Eng JJ, Winter DA, Patla AE (1994) Strategies for recovery from a trip in early and late swing during human walking. Exp Brain Res 102:339–349PubMedCrossRef Eng JJ, Winter DA, Patla AE (1994) Strategies for recovery from a trip in early and late swing during human walking. Exp Brain Res 102:339–349PubMedCrossRef
Zurück zum Zitat Fautrelle L, Prablanc C, Berret B et al (2010) Pointing to double-step visual stimuli from a standing position: very short latency (express) corrections are observed in upper and lower limbs and may not require cortical involvement. Neuroscience 169:697–705. doi:10.1016/j.neuroscience.2010.05.014 PubMedCrossRef Fautrelle L, Prablanc C, Berret B et al (2010) Pointing to double-step visual stimuli from a standing position: very short latency (express) corrections are observed in upper and lower limbs and may not require cortical involvement. Neuroscience 169:697–705. doi:10.​1016/​j.​neuroscience.​2010.​05.​014 PubMedCrossRef
Zurück zum Zitat Fautrelle L, Barbieri G, Ballay Y, Bonnetblanc F (2011) Pointing to double-step visual stimuli from a standing position: motor corrections when the speed-accuracy trade-off is unexpectedly modified in-flight. A breakdown of the perception-action coupling. Neuroscience 194:124–135. doi:10.1016/j.neuroscience.2011.07.049 PubMedCrossRef Fautrelle L, Barbieri G, Ballay Y, Bonnetblanc F (2011) Pointing to double-step visual stimuli from a standing position: motor corrections when the speed-accuracy trade-off is unexpectedly modified in-flight. A breakdown of the perception-action coupling. Neuroscience 194:124–135. doi:10.​1016/​j.​neuroscience.​2011.​07.​049 PubMedCrossRef
Zurück zum Zitat Forner-Cordero A, Koopman HFJM, van der Helm FCT (2003) Multiple-step strategies to recover from stumbling perturbations. Gait Posture 18:47–59PubMedCrossRef Forner-Cordero A, Koopman HFJM, van der Helm FCT (2003) Multiple-step strategies to recover from stumbling perturbations. Gait Posture 18:47–59PubMedCrossRef
Zurück zum Zitat Gabel SF, Misslisch H, Schaafsma SJ, Duysens J (2002) Temporal properties of optic flow responses in the ventral intraparietal area. Vis Neurosci 19:381–388PubMedCrossRef Gabel SF, Misslisch H, Schaafsma SJ, Duysens J (2002) Temporal properties of optic flow responses in the ventral intraparietal area. Vis Neurosci 19:381–388PubMedCrossRef
Zurück zum Zitat Georgopoulos AP, Kalaska JF, Massey JT (1981) Spatial trajectories and reaction times of aimed movements: effects of practice, uncertainty, and change in target location. J Neurophysiol 46:725–743PubMed Georgopoulos AP, Kalaska JF, Massey JT (1981) Spatial trajectories and reaction times of aimed movements: effects of practice, uncertainty, and change in target location. J Neurophysiol 46:725–743PubMed
Zurück zum Zitat Gielen CC, van den Heuvel PJ, van Gisbergen JA (1984) Coordination of fast eye and arm movements in a tracking task. Exp Brain Res 56:154–161PubMedCrossRef Gielen CC, van den Heuvel PJ, van Gisbergen JA (1984) Coordination of fast eye and arm movements in a tracking task. Exp Brain Res 56:154–161PubMedCrossRef
Zurück zum Zitat Goodale MA, Pelisson D, Prablanc C (1986) Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature 320:748–750. doi:10.1038/320748a0 PubMedCrossRef Goodale MA, Pelisson D, Prablanc C (1986) Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature 320:748–750. doi:10.​1038/​320748a0 PubMedCrossRef
Zurück zum Zitat Grabiner MD, Koh TJ, Lundin TM, Jahnigen DW (1993) Kinematics of recovery from a stumble. J Gerontol 48:M97–M102PubMedCrossRef Grabiner MD, Koh TJ, Lundin TM, Jahnigen DW (1993) Kinematics of recovery from a stumble. J Gerontol 48:M97–M102PubMedCrossRef
Zurück zum Zitat Hausdorff JM, Doniger GM, Springer S et al (2009) A common cognitive profile in elderly fallers and in patients with Parkinson’s disease: the prominence of impaired executive function and attention. Exp Aging Res 32:411–429. doi:10.1080/03610730600875817 CrossRef Hausdorff JM, Doniger GM, Springer S et al (2009) A common cognitive profile in elderly fallers and in patients with Parkinson’s disease: the prominence of impaired executive function and attention. Exp Aging Res 32:411–429. doi:10.​1080/​0361073060087581​7 CrossRef
Zurück zum Zitat Herman T, Mirelman A, Giladi N et al (2010) Executive control deficits as a prodrome to falls in healthy older adults: a prospective study linking thinking, walking, and falling. J Gerontol A Biol Sci Med Sci 65:1086–1092. doi:10.1093/gerona/glq077 PubMedCrossRef Herman T, Mirelman A, Giladi N et al (2010) Executive control deficits as a prodrome to falls in healthy older adults: a prospective study linking thinking, walking, and falling. J Gerontol A Biol Sci Med Sci 65:1086–1092. doi:10.​1093/​gerona/​glq077 PubMedCrossRef
Zurück zum Zitat Kimura D, Kadota K, Kinoshita H (2015) The impact of aging on the spatial accuracy of quick corrective arm movements in response to sudden target displacement during reaching. Front Aging Neurosci 7:1–11. doi:10.3389/fnagi.2015.00182 CrossRef Kimura D, Kadota K, Kinoshita H (2015) The impact of aging on the spatial accuracy of quick corrective arm movements in response to sudden target displacement during reaching. Front Aging Neurosci 7:1–11. doi:10.​3389/​fnagi.​2015.​00182 CrossRef
Zurück zum Zitat Lajoie K, Drew T (2007) Lesions of area 5 of the posterior parietal cortex in the cat produce errors in the accuracy of paw placement during visually guided locomotion. J Neurophysiol 97:2339–2354. doi:10.1152/jn.01196.2006 PubMedCrossRef Lajoie K, Drew T (2007) Lesions of area 5 of the posterior parietal cortex in the cat produce errors in the accuracy of paw placement during visually guided locomotion. J Neurophysiol 97:2339–2354. doi:10.​1152/​jn.​01196.​2006 PubMedCrossRef
Zurück zum Zitat Lin MB, Lin K (2016) Walking while performing working memory tasks changes the prefrontal cortex hemodynamic activations and gait kinematics. Front Behav Neurosci. doi:10.3389/fnbeh.2016.00092 Lin MB, Lin K (2016) Walking while performing working memory tasks changes the prefrontal cortex hemodynamic activations and gait kinematics. Front Behav Neurosci. doi:10.​3389/​fnbeh.​2016.​00092
Zurück zum Zitat Lord SR, Fitzpatrick RC (2001) Choice stepping reaction time: a composite measure of falls risk in older people. J Gerontol A Biol Sci Med Sci 56:M627–M632PubMedCrossRef Lord SR, Fitzpatrick RC (2001) Choice stepping reaction time: a composite measure of falls risk in older people. J Gerontol A Biol Sci Med Sci 56:M627–M632PubMedCrossRef
Zurück zum Zitat Luppino G, Murata A, Govoni P, Matelli M (1999) Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4). Exp Brain Res 128:181–187PubMedCrossRef Luppino G, Murata A, Govoni P, Matelli M (1999) Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4). Exp Brain Res 128:181–187PubMedCrossRef
Zurück zum Zitat Marigold DS, Drew T (2011) Contribution of cells in the posterior parietal cortex to the planning of visually guided locomotion in the cat: effects of temporary visual interruption. J Neurophysiol 105:2457–2470. doi:10.1152/jn.00992.2010 PubMedCrossRef Marigold DS, Drew T (2011) Contribution of cells in the posterior parietal cortex to the planning of visually guided locomotion in the cat: effects of temporary visual interruption. J Neurophysiol 105:2457–2470. doi:10.​1152/​jn.​00992.​2010 PubMedCrossRef
Zurück zum Zitat Marigold DS, Weerdesteyn V, Patla AE, Duysens J (2007) Keep looking ahead? Re-direction of visual fixation does not always occur during an unpredictable obstacle avoidance task. Exp Brain Res 176:32–42. doi:10.1007/s00221-006-0598-0 PubMedCrossRef Marigold DS, Weerdesteyn V, Patla AE, Duysens J (2007) Keep looking ahead? Re-direction of visual fixation does not always occur during an unpredictable obstacle avoidance task. Exp Brain Res 176:32–42. doi:10.​1007/​s00221-006-0598-0 PubMedCrossRef
Zurück zum Zitat Moraes R, Lewis MA, Patla AE (2004) Strategies and determinants for selection of alternate foot placement during human locomotion: influence of spatial and temporal constraints. Exp Brain Res 159:1–13. doi:10.1007/s00221-004-1888-z PubMed Moraes R, Lewis MA, Patla AE (2004) Strategies and determinants for selection of alternate foot placement during human locomotion: influence of spatial and temporal constraints. Exp Brain Res 159:1–13. doi:10.​1007/​s00221-004-1888-z PubMed
Zurück zum Zitat Patla AE, Beuter A, Prentice S (1991) A two stage correction of limb trajectory to avoid obstacles during stepping. Neurosci Res Commun 8:153–159 Patla AE, Beuter A, Prentice S (1991) A two stage correction of limb trajectory to avoid obstacles during stepping. Neurosci Res Commun 8:153–159
Zurück zum Zitat Patla AE, Prentice SD, Rietdyk S et al (1999) What guides the selection of alternate foot placement during locomotion in humans. Exp Brain Res 128:441–450PubMedCrossRef Patla AE, Prentice SD, Rietdyk S et al (1999) What guides the selection of alternate foot placement during locomotion in humans. Exp Brain Res 128:441–450PubMedCrossRef
Zurück zum Zitat Paulignan Y, MacKenzie C, Marteniuk R, Jeannerod M (1991) Selective perturbation of visual input during prehension movements. 1. The effects of changing object position. Exp Brain Res 83:502–512. doi:10.1007/BF00229827 PubMedCrossRef Paulignan Y, MacKenzie C, Marteniuk R, Jeannerod M (1991) Selective perturbation of visual input during prehension movements. 1. The effects of changing object position. Exp Brain Res 83:502–512. doi:10.​1007/​BF00229827 PubMedCrossRef
Zurück zum Zitat Pélisson D, Prablanc C, Goodale MA, Jeannerod M (1986) Visual control of reaching movements without vision of the limb. II. Evidence of fast unconscious processes correcting the trajectory of the hand to the final position of a double-step stimulus. Exp Brain Res 62:303–311PubMedCrossRef Pélisson D, Prablanc C, Goodale MA, Jeannerod M (1986) Visual control of reaching movements without vision of the limb. II. Evidence of fast unconscious processes correcting the trajectory of the hand to the final position of a double-step stimulus. Exp Brain Res 62:303–311PubMedCrossRef
Zurück zum Zitat Pijnappels M (2004) Recovery from a trip in young and older adults. VU Amsterdam, Amsterdam, The Netherlands Pijnappels M (2004) Recovery from a trip in young and older adults. VU Amsterdam, Amsterdam, The Netherlands
Zurück zum Zitat Pisella L, Gréa H, Tilikete C et al (2000) An “automatic pilot” for the hand in human posterior parietal cortex: toward reinterpreting optic ataxia. Nat Neurosci 3:729–736. doi:10.1038/76694 PubMedCrossRef Pisella L, Gréa H, Tilikete C et al (2000) An “automatic pilot” for the hand in human posterior parietal cortex: toward reinterpreting optic ataxia. Nat Neurosci 3:729–736. doi:10.​1038/​76694 PubMedCrossRef
Zurück zum Zitat Potocanac Z, Smulders E, Pijnappels M, Verschueren S, Duysens J (2014c) Response inhibition measured using a walking task is correlated to a computer inhibition test in young adults. In: 24th Annual Meeting of the Society for the Neural Control of Movement. Amsterdam, The Netherlands Potocanac Z, Smulders E, Pijnappels M, Verschueren S, Duysens J (2014c) Response inhibition measured using a walking task is correlated to a computer inhibition test in young adults. In: 24th Annual Meeting of the Society for the Neural Control of Movement. Amsterdam, The Netherlands
Zurück zum Zitat Prablanc C, Martin O (1992) Automatic control during hand reaching at undetected two-dimensional target displacements. J Neurophysiol 67:455–469PubMed Prablanc C, Martin O (1992) Automatic control during hand reaching at undetected two-dimensional target displacements. J Neurophysiol 67:455–469PubMed
Zurück zum Zitat Reichenbach A, Bresciani JP, Peer A et al (2011) Contributions of the PPC to online control of visually guided reaching movements assessed with fMRI-Guided TMS. Cereb Cortex 21:1602–1612. doi:10.1093/cercor/bhq225 PubMedCrossRef Reichenbach A, Bresciani JP, Peer A et al (2011) Contributions of the PPC to online control of visually guided reaching movements assessed with fMRI-Guided TMS. Cereb Cortex 21:1602–1612. doi:10.​1093/​cercor/​bhq225 PubMedCrossRef
Zurück zum Zitat Reynolds RF, Day BL (2005a) Rapid visuo-motor processes drive the leg regardless of balance constraints. Curr Biol 15:R48–R49PubMedCrossRef Reynolds RF, Day BL (2005a) Rapid visuo-motor processes drive the leg regardless of balance constraints. Curr Biol 15:R48–R49PubMedCrossRef
Zurück zum Zitat Reynolds RF, Day BL (2005b) Supplemental data: rapid visuo-motor processes drive the leg regardless of balance constraints. Curr Biol 15:574CrossRef Reynolds RF, Day BL (2005b) Supplemental data: rapid visuo-motor processes drive the leg regardless of balance constraints. Curr Biol 15:574CrossRef
Zurück zum Zitat Rietdyk S, Patla AE (1998) Context-dependent reflex control: some insights into the role of balance. Exp Brain Res 119:251–259PubMedCrossRef Rietdyk S, Patla AE (1998) Context-dependent reflex control: some insights into the role of balance. Exp Brain Res 119:251–259PubMedCrossRef
Zurück zum Zitat Santos LC, Moraes R, Patla AE (2010) Visual feedforward control in human locomotion during avoidance of obstacles that change size. Mot Control 14:424–439CrossRef Santos LC, Moraes R, Patla AE (2010) Visual feedforward control in human locomotion during avoidance of obstacles that change size. Mot Control 14:424–439CrossRef
Zurück zum Zitat Schillings AM, Van Wezel BM, Duysens J (1996) Mechanically induced stumbling during human treadmill walking. J Neurosci Methods 67:11–17PubMedCrossRef Schillings AM, Van Wezel BM, Duysens J (1996) Mechanically induced stumbling during human treadmill walking. J Neurosci Methods 67:11–17PubMedCrossRef
Zurück zum Zitat Schillings AM, van Wezel BM, Mulder T, Duysens J (2000) Muscular responses and movement strategies during stumbling over obstacles. J Neurophysiol 83:2093–2102PubMed Schillings AM, van Wezel BM, Mulder T, Duysens J (2000) Muscular responses and movement strategies during stumbling over obstacles. J Neurophysiol 83:2093–2102PubMed
Zurück zum Zitat Soechting JF, Lacquaniti F (1983) Modification of trajectory of a pointing movement in response to a change in target location. J Neurophysiol 49:548–564PubMed Soechting JF, Lacquaniti F (1983) Modification of trajectory of a pointing movement in response to a change in target location. J Neurophysiol 49:548–564PubMed
Zurück zum Zitat Tunik E, Frey SH, Grafton ST (2005) Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nat Neurosci 8:505–511. doi:10.1038/nn1430 PubMed Tunik E, Frey SH, Grafton ST (2005) Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nat Neurosci 8:505–511. doi:10.​1038/​nn1430 PubMed
Zurück zum Zitat van den Bogert AJ, Pavol MJ, Grabiner MD (2002) Response time is more important than walking speed for the ability of older adults to avoid a fall after a trip. J Biomech 35:199–205PubMedCrossRef van den Bogert AJ, Pavol MJ, Grabiner MD (2002) Response time is more important than walking speed for the ability of older adults to avoid a fall after a trip. J Biomech 35:199–205PubMedCrossRef
Zurück zum Zitat Vervoort G, Alaerts K, Bengevoord A et al (2016) Parkinsonism and related disorders functional connectivity alterations in the motor and fronto-parietal network relate to behavioral heterogeneity in Parkinson’ s disease. Parkinsonism Relat Disord 24:48–55. doi:10.1016/j.parkreldis.2016.01.016 PubMedCrossRef Vervoort G, Alaerts K, Bengevoord A et al (2016) Parkinsonism and related disorders functional connectivity alterations in the motor and fronto-parietal network relate to behavioral heterogeneity in Parkinson’ s disease. Parkinsonism Relat Disord 24:48–55. doi:10.​1016/​j.​parkreldis.​2016.​01.​016 PubMedCrossRef
Zurück zum Zitat Webster MJ, Bachevalier J, Ungerleider LG (1994) Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb Cortex 4:470–483PubMedCrossRef Webster MJ, Bachevalier J, Ungerleider LG (1994) Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb Cortex 4:470–483PubMedCrossRef
Zurück zum Zitat Weerdesteyn V, Rijken H, Geurts ACH et al (2006) A five-week exercise program can reduce falls and improve obstacle avoidance in the elderly. Gerontology 52:131–141. doi:10.1159/000091822 PubMedCrossRef Weerdesteyn V, Rijken H, Geurts ACH et al (2006) A five-week exercise program can reduce falls and improve obstacle avoidance in the elderly. Gerontology 52:131–141. doi:10.​1159/​000091822 PubMedCrossRef
Zurück zum Zitat Weerdesteyn V, Nienhuis B, Geurts ACH, Duysens J (2007) Age-related deficits in early response characteristics of obstacle avoidance under time pressure. J Gerontol A Biol Sci Med Sci 62:1042–1047PubMedCrossRef Weerdesteyn V, Nienhuis B, Geurts ACH, Duysens J (2007) Age-related deficits in early response characteristics of obstacle avoidance under time pressure. J Gerontol A Biol Sci Med Sci 62:1042–1047PubMedCrossRef
Zurück zum Zitat Yogev-Seligmann G, Hausdorff JM, Giladi N (2008) The role of executive function and attention in gait. Mov Disord 23:329–342PubMedCrossRef Yogev-Seligmann G, Hausdorff JM, Giladi N (2008) The role of executive function and attention in gait. Mov Disord 23:329–342PubMedCrossRef
Metadaten
Titel
Online adjustments of leg movements in healthy young and old
verfasst von
Zrinka Potocanac
Jacques Duysens
Publikationsdatum
01.08.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Experimental Brain Research / Ausgabe 8/2017
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-017-4967-7

Weitere Artikel der Ausgabe 8/2017

Experimental Brain Research 8/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.