Skip to main content

Advertisement

Log in

Different Gene Expression Patterns in the Bone Tissue of Aging Postmenopausal Osteoporotic and Non-osteoporotic Women

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Purpose

To identify genes that are differently expressed in osteoporotic and non-osteoporotic human bone and to describe the relationships between these genes using multivariate data analysis.

Methods

Seven bone tissue samples from postmenopausal osteoporotic patients and 10 bone tissue samples from postmenopausal non-osteoporotic women were examined in our study. Messenger RNA was prepared from each sample and reverse transcribed to cDNA. The expression differences of 87 selected genes were analyzed in a Taqman probe-based quantitative real-time RT-PCR system.

Results

A Mann-Whitney U-test indicated significant differences in the expression of nine genes (p ≤ 0.05). Seven of these nine genes–ALPL, COL1A1, MMP2, MMP13, MMP9, PDGFA, NFKB1—were significantly downregulated in the bone tissue of osteoporotic women, while CD36 and TWIST2 were significantly upregulated in osteoporotic patients. Principal components analysis was used to evaluate data structure and the relationship between osteoporotic and non-osteoporotic phenotypes based on the multiple mRNA expression profiles of 78 genes. Canonical variates analysis demonstrated further that osteoporotic and non-osteoporotic tissues can be distinguished by expression analysis of genes coding growth factors/non-collagen matrix molecules, and genes belonging to the canonical TGFB pathway.

Conclusion

Significant differences observed in gene expression profiles of osteoporotic and non-osteoporotic human bone tissues provide further insight into the pathogenesis of this disease. Characterization of the differences between osteoporotic and non-osteoporotic bones by expression profiling will contribute to the development of diagnostic tools in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Prentice A (2001) The relative contribution of diet and genotype to bone development. Proc Nutr Soc 60:45–52

    Article  PubMed  CAS  Google Scholar 

  2. Lane NE (2006) Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol 194:S3–11

    Article  PubMed  CAS  Google Scholar 

  3. Ralston SH (2005) Genetic determinants of osteoporosis. Curr Opin Rheumatol 17:475–479

    Article  PubMed  Google Scholar 

  4. Zajickova K, Zofkova I (2003) Osteoporosis: Genetic analysis of multifactorial disease. Endocr Regul 37:31–44

    PubMed  CAS  Google Scholar 

  5. Rizzoli R, Bonjour JP, Ferrari SL (2001) Osteoporosis, genetics and hormones. J Mol Endocrinol 26:79–94

    Article  PubMed  CAS  Google Scholar 

  6. Dvornyk V, Recker RR, Deng HW (2003) Gene expression studies of osteoporosis: Implications for microarray research. Osteoporos Int 14:451–461

    Article  PubMed  CAS  Google Scholar 

  7. Ralston SH (1994) Analysis of gene expression in human bone biopsies by polymerase chain reaction: Evidence for enhanced cytokine expression in postmenopausal osteoporosis. J Bone Miner Res 9:883–890

    Article  PubMed  CAS  Google Scholar 

  8. Abrahamsen B, Shalhoub V, Larson EK, Eriksen EF, Beck-Nielsen H, Marks SC Jr (2000) Cytokine RNA levels in transiliac bone biopsies from healthy early postmenopausal women. Bone 26:137–145

    Article  PubMed  CAS  Google Scholar 

  9. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502

    Article  PubMed  CAS  Google Scholar 

  10. Jolliffe I (1986) Principal component analysis. Springer, Berlin Heidelberg New York

    Google Scholar 

  11. Podani J (2000) Introduction to the exploration of multivariate biological data. Backhuys, Leiden

    Google Scholar 

  12. Raychaudhuri S, Stuart JM, Altman RB (2000) Principal components analysis to summarize microarray experiments: Application to sporulation time series. Pac Symp Biocomput [2000]:455–466

  13. Yeung KY, Ruzzo WL (2001) Principal component analysis for clustering gene expression data. Bioinformatics 17:763–774

    Article  PubMed  CAS  Google Scholar 

  14. Dai JJ, Lieu L, Rocke D (2006) Dimension reduction for classification with gene expression microarray data. Stat Appl Genet Mol Biol 5:article 6

  15. Cattell R (1966) The scree test for the number of factors. Multivar Behav Res 1:140–161

    Google Scholar 

  16. Podani J (2001) SYN-TAX 2000: User’s manual. Scientia, Budapest

    Google Scholar 

  17. Kawabata M, Imamura T, Miyazono K (1998) Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev 9:49–61

    Article  PubMed  CAS  Google Scholar 

  18. Gazzerro E, Canalis E (2006) Bone morphogenetic proteins and their antagonists. Rev Endocr Metab Disord 7:51–65

    Article  PubMed  CAS  Google Scholar 

  19. Turner RT, Riggs BL, Spelsberg TC (1994) Skeletal effects of estrogen. Endocr Rev 15:275–300

    Article  PubMed  CAS  Google Scholar 

  20. Manolagas SC, Kousteni S, Jilka RL (2002) Sex steroids and bone. Recent Prog Horm Res 57:385–409

    Article  PubMed  CAS  Google Scholar 

  21. Christenson RH (1997) Biochemical markers of bone metabolism: An overview. Clin Biochem 30:573–593

    Article  PubMed  CAS  Google Scholar 

  22. Vega D, Maalouf NM, Sakhaee K (2007) The role of RANK/RANKL/OPG: Clinical implications. J Clin Endocrinol Metab 92(12):4514–4521

    Article  PubMed  CAS  Google Scholar 

  23. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233

    Article  PubMed  CAS  Google Scholar 

  24. Torricelli P, Fini M, Giavaresi G, Giardino R (2002) Human osteoblast cultures from osteoporotic and healthy bone: Biochemical markers and cytokine expression in basal conditions and in response to 1,25(OH)2D3. Artif Cells Blood Substit Immobil Biotechnol 30:219–227

    Article  PubMed  CAS  Google Scholar 

  25. Mueller SM, Glowacki J (2001) Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J Cell Biochem 82:583–590

    Article  PubMed  CAS  Google Scholar 

  26. Rodriguez JP, Montecinos L, Rios S, Reyes P, Martinez J (2000) Mesenchymal stem cells from osteoporotic patients produce a type I collagen-deficient extracellular matrix favoring adipogenic differentiation. J Cell Biochem 79:557–565

    Article  PubMed  CAS  Google Scholar 

  27. Abdallah BM, Haack-Sorensen M, Fink T, Kassem M (2006) Inhibition of osteoblast differentiation but not adipocyte differentiation of mesenchymal stem cells by sera obtained from aged females. Bone 39:181–188

    Article  PubMed  Google Scholar 

  28. Cao J, Venton L, Sakata T, Halloran BP (2003) Expression of RANKL and OPG correlates with age-related bone loss in male C57BL/6 mice. J Bone Miner Res 18:270–277

    Article  PubMed  CAS  Google Scholar 

  29. Carron JA, Wagstaff SC, Gallagher JA, Bowler WB (2000) A CD36-binding peptide from thrombospondin-1 can stimulate resorption by osteoclasts in vitro. Biochem Biophys Res Commun 270:1124–1127

    Article  PubMed  CAS  Google Scholar 

  30. Calvo D, Gomez-Coronado D, Suarez Y, Lasuncion MA, Vega MA (1998) Human CD36 is a high affinity receptor for the native lipoproteins HDL, LDL, and VLDL. J Lipid Res 39:777–788

    PubMed  CAS  Google Scholar 

  31. Kawaguchi H, Akune T, Yamaguchi M, Ohba S, Ogata N, Chung UI, Kubota N, Terauchi Y, Kadowaki T, Nakamura K (2005) Distinct effects of PPARgamma insufficiency on bone marrow cells, osteoblasts, and osteoclastic cells. J Bone Miner Metab 23:275–279

    Article  PubMed  Google Scholar 

  32. Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B (2004) Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: The role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell 3:379–389

    Article  PubMed  CAS  Google Scholar 

  33. Aitman TJ, Glazier AM, Wallace CA, Cooper LD, Norsworthy PJ, Wahid FN, Al-Majali KM, Trembling PM, Mann CJ, Shoulders CC, Graf D, St Lezin E, Kurtz TW, Kren V, Pravenec M, Ibrahimi A, Abumrad NA, Stanton LW, Scott J (1999) Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 21:76–83

    Article  PubMed  CAS  Google Scholar 

  34. Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 93:229–240

    Article  PubMed  CAS  Google Scholar 

  35. Tamura M, Noda M (1999) Identification of DERMO-1 as a member of helix-loop-helix type transcription factors expressed in osteoblastic cells. J Cell Biochem 72:167–176

    Article  PubMed  CAS  Google Scholar 

  36. Gong XQ, Li L (2002) Dermo-1, a multifunctional basic helix-loop-helix protein, represses MyoD transactivation via the HLH domain, MEF2 interaction, and chromatin deacetylation. J Biol Chem 277:12310–12317

    Article  PubMed  CAS  Google Scholar 

  37. Lee MS, Lowe G, Flanagan S, Kuchler K, Glackin CA (2000) Human Dermo-1 has attributes similar to twist in early bone development. Bone 27:591–602

    Article  PubMed  CAS  Google Scholar 

  38. Schroeder TM, Westendorf JJ (2005) Histone deacetylase inhibitors promote osteoblast maturation. J Bone Miner Res 20:2254–2263

    Article  PubMed  CAS  Google Scholar 

  39. Leeman MF, Curran S, Murray GI (2002) The structure, regulation, and function of human matrix metalloproteinase-13. Crit Rev Biochem Mol Biol 37:149–166

    Article  PubMed  CAS  Google Scholar 

  40. Fridman R, Toth M, Pena D, Mobashery S (1995) Activation of progelatinase B (MMP-9) by gelatinase A (MMP-2). Cancer Res 55:2548–2555

    PubMed  CAS  Google Scholar 

  41. Knauper V, Smith B, Lopez-Otin C, Murphy G (1997) Activation of progelatinase B (proMMP-9) by active collagenase-3 (MMP-13). Eur J Biochem/FEBS 248:369–373

    Article  CAS  Google Scholar 

  42. Hatori K, Sasano Y, Takahashi I, Kamakura S, Kagayama M, Sasaki K (2004) Osteoblasts and osteocytes express MMP2 and -8 and TIMP1, -2, and -3 along with extracellular matrix molecules during appositional bone formation. Anat Rec A 277:262–271

    Article  CAS  Google Scholar 

  43. Filanti C, Dickson GR, Di Martino D, Ulivi V, Sanguineti C, Romano P, Palermo C, Manduca P (2000) The expression of metalloproteinase-2, -9, and -14 and of tissue inhibitors-1 and -2 is developmentally modulated during osteogenesis in vitro, the mature osteoblastic phenotype expressing metalloproteinase-14. J Bone Miner Res 15:2154–2168

    Article  PubMed  CAS  Google Scholar 

  44. Engsig MT, Chen QJ, Vu TH, Pedersen AC, Therkidsen B, Lund LR, Henriksen K, Lenhard T, Foged NT, Werb Z, Delaisse JM (2000) Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol 151:879–889

    Article  PubMed  CAS  Google Scholar 

  45. Rydziel S, Shaikh S, Canalis E (1994) Platelet-derived growth factor-AA and -BB (PDGF-AA and -BB) enhance the synthesis of PDGF-AA in bone cell cultures. Endocrinology 134:2541–2546

    Article  PubMed  CAS  Google Scholar 

  46. Hock JM, Canalis E (1994) Platelet-derived growth factor enhances bone cell replication, but not differentiated function of osteoblasts. Endocrinology 134:1423–1428

    Article  PubMed  CAS  Google Scholar 

  47. Fiedler J, Etzel N, Brenner RE (2004) To go or not to go: Migration of human mesenchymal progenitor cells stimulated by isoforms of PDGF. J Cell Biochem 93:990–998

    Article  PubMed  CAS  Google Scholar 

  48. Tanaka H, Wakisaka A, Ogasa H, Kawai S, Liang CT (2002) Effect of IGF-I and PDGF administered in vivo on the expression of osteoblast-related genes in old rats. J Endocrinol 174:63–70

    Article  PubMed  CAS  Google Scholar 

  49. Wada T, Nakashima T, Hiroshi N, Penninger JM (2006) RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 12:17–25

    Article  PubMed  CAS  Google Scholar 

  50. Park H, Jung YK, Park OJ, Lee YJ, Choi JY, Choi Y (2005) Interaction of Fas ligand and Fas expressed on osteoclast precursors increases osteoclastogenesis. J Immunol 175:7193–201

    PubMed  CAS  Google Scholar 

  51. Ozeki N, Mogi M, Nakamura H, Togari A (2002) Differential expression of the Fas-Fas ligand system on cytokine-induced apoptotic cell death in mouse osteoblastic cells. Arch Oral Biol 47:511–517

    Article  PubMed  CAS  Google Scholar 

  52. Atkins GJ, Bouralexis S, Evdokiou A, Hay S, Labrinidis A, Zannettino AC, Haynes DR, Findlay DM (2002) Human osteoblasts are resistant to Apo2L/TRAIL-mediated apoptosis. Bone 31:448–56

    Article  PubMed  CAS  Google Scholar 

  53. Roux S, Lambert-Comeau P, Saint-Pierre C, Lepine M, Sawan B, Parent JL (2005) Death receptors, Fas and TRAIL receptors, are involved in human osteoclast apoptosis. Biochem Biophys Res Commun 333:42–50

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grants NKFP-1A/007/2004, NKFP-1A/002/2004 from the National Research and Technological Office (NKTH) of Hungary, as well as by research grant ETT 022/2006 from the Ministry of Health, Hungary. J.P. was supported by a Hungarian Scientific Research Fund (OTKA) grant no. NI 68218. The authors thank Dr. Attila Tóth (Dresden University of Technology, Germany) for critically reading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernadett Balla.

Additional information

Bernadett Balla1 and János P. Kósa1 contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balla, B., Kósa, J.P., Kiss, J. et al. Different Gene Expression Patterns in the Bone Tissue of Aging Postmenopausal Osteoporotic and Non-osteoporotic Women. Calcif Tissue Int 82, 12–26 (2008). https://doi.org/10.1007/s00223-007-9092-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-007-9092-3

Keywords

Navigation