Skip to main content
Erschienen in: Calcified Tissue International 3/2009

01.09.2009

Survey of the Enthesopathy of X-Linked Hypophosphatemia and Its Characterization in Hyp Mice

verfasst von: Guoying Liang, Lee D. Katz, Karl L. Insogna, Thomas O. Carpenter, Carolyn M. Macica

Erschienen in: Calcified Tissue International | Ausgabe 3/2009

Einloggen, um Zugang zu erhalten

Abstract

X-linked hypophosphatemia (XLH) is characterized by rickets and osteomalacia as a result of an inactivating mutation of the PHEX (phosphate-regulating gene with homology to endopeptidases on the X chromosome) gene. PHEX encodes an endopeptidase that, when inactivated, results in elevated circulating levels of FGF-23, a novel phosphate-regulating hormone (a phosphatonin), thereby resulting in increased phosphate excretion and impaired bone mineralization. A generalized and severe mineralizing enthesopathy in patients with XLH was first reported in 1985; we likewise report a survey in which we found evidence of enthesopathy in fibrocartilaginous insertion sites, as well as osteophyte formation, in the majority of patients. Nonetheless, there has been very little focus on the progression and pathogenesis underlying the paradoxical heterotopic calcification of tendon and ligament insertion sites. Such studies have been hampered by lack of a model of mineralizing enthesopathy. We therefore characterized the involvement of the most frequently targeted fibrocartilaginous tendon insertion sites in Hyp mice, a murine model of the XLH mutation that phenocopies the human syndrome in every detail including hypophosphatemia and elevated FGF-23. Histological examination of the affected entheses revealed that mineralizing insertion sites, while thought to involve bone spur formation, were not due to bone-forming osteoblasts but instead to a significant expansion of mineralizing fibrocartilage. Our finding that enthesis fibrocartilage cells specifically express fibroblast growth factor receptor 3 (FGFR3)/Klotho suggests that the high circulating levels of FGF-23, characteristic of XLH and Hyp mice, may be part of the biochemical milieu that underlies the expansion of mineralizing enthesis fibrocartilage.
Literatur
1.
Zurück zum Zitat White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ (2001) Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int 60:2079–2086PubMedCrossRef White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ (2001) Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int 60:2079–2086PubMedCrossRef
2.
Zurück zum Zitat Fukumoto S, Yamashita T (2002) Fibroblast growth factor-23 is the phosphaturic factor in tumor-induced osteomalacia and may be phosphatonin. Curr Opin Nephrol Hypertens 11:385–389PubMedCrossRef Fukumoto S, Yamashita T (2002) Fibroblast growth factor-23 is the phosphaturic factor in tumor-induced osteomalacia and may be phosphatonin. Curr Opin Nephrol Hypertens 11:385–389PubMedCrossRef
3.
Zurück zum Zitat Bowe AE, Finnegan R, Jan de Beur SM, Cho J, Levine MA, Kumar R, Schiavi SC (2001) FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun 284:977–981PubMedCrossRef Bowe AE, Finnegan R, Jan de Beur SM, Cho J, Levine MA, Kumar R, Schiavi SC (2001) FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun 284:977–981PubMedCrossRef
4.
Zurück zum Zitat Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Yu X, Rauch F, Davis SI, Zhang S, Rios H, Drezner MK, Quarles LD, Bonewald LF, White KE (2006) Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38:1310–1315PubMedCrossRef Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Yu X, Rauch F, Davis SI, Zhang S, Rios H, Drezner MK, Quarles LD, Bonewald LF, White KE (2006) Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38:1310–1315PubMedCrossRef
5.
Zurück zum Zitat Lorenz-Depiereux B, Bastepe M, Benet-Pages A, Amyere M, Wagenstaller J, Muller-Barth U, Badenhoop K, Kaiser SM, Rittmaster RS, Shlossberg AH, Olivares JL, Loris C, Ramos FJ, Glorieux F, Vikkula M, Juppner H, Strom TM (2006) DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet 38:1248–1250PubMedCrossRef Lorenz-Depiereux B, Bastepe M, Benet-Pages A, Amyere M, Wagenstaller J, Muller-Barth U, Badenhoop K, Kaiser SM, Rittmaster RS, Shlossberg AH, Olivares JL, Loris C, Ramos FJ, Glorieux F, Vikkula M, Juppner H, Strom TM (2006) DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet 38:1248–1250PubMedCrossRef
6.
Zurück zum Zitat Polisson RP, Martinez S, Khoury M, Harrell RM, Lyles KW, Friedman N, Harrelson JM, Reisner E, Drezner MK (1985) Calcification of entheses associated with X-linked hypophosphatemic osteomalacia. N Engl J Med 313:1–6PubMedCrossRef Polisson RP, Martinez S, Khoury M, Harrell RM, Lyles KW, Friedman N, Harrelson JM, Reisner E, Drezner MK (1985) Calcification of entheses associated with X-linked hypophosphatemic osteomalacia. N Engl J Med 313:1–6PubMedCrossRef
7.
Zurück zum Zitat Reid IR, Hardy DC, Murphy WA, Teitelbaum SL, Bergfeld MA, Whyte MP (1989) X-linked hypophosphatemia: a clinical, biochemical, and histopathologic assessment of morbidity in adults. Medicine (Baltimore) 68:336–352 Reid IR, Hardy DC, Murphy WA, Teitelbaum SL, Bergfeld MA, Whyte MP (1989) X-linked hypophosphatemia: a clinical, biochemical, and histopathologic assessment of morbidity in adults. Medicine (Baltimore) 68:336–352
8.
Zurück zum Zitat Benjamin M, Kumai T, Milz S, Boszczyk BM, Boszczyk AA, Ralphs JR (2002) The skeletal attachment of tendons–tendon “entheses”. Comp Biochem Physiol A Mol Integr Physiol 133:931–945PubMedCrossRef Benjamin M, Kumai T, Milz S, Boszczyk BM, Boszczyk AA, Ralphs JR (2002) The skeletal attachment of tendons–tendon “entheses”. Comp Biochem Physiol A Mol Integr Physiol 133:931–945PubMedCrossRef
9.
Zurück zum Zitat Benjamin M, Toumi H, Ralphs JR, Bydder G, Best TM, Milz S (2006) Where tendons and ligaments meet bone: attachment sites (“entheses”) in relation to exercise and/or mechanical load. J Anat 208:471–490PubMedCrossRef Benjamin M, Toumi H, Ralphs JR, Bydder G, Best TM, Milz S (2006) Where tendons and ligaments meet bone: attachment sites (“entheses”) in relation to exercise and/or mechanical load. J Anat 208:471–490PubMedCrossRef
10.
Zurück zum Zitat Ramonda R, Sfriso P, Podswiadek M, Oliviero F, Valvason C, Punzi L (2005) The enthesopathy of vitamin D-resistant osteomalacia in adults [in Italian]. Reumatismo 57:52–56PubMed Ramonda R, Sfriso P, Podswiadek M, Oliviero F, Valvason C, Punzi L (2005) The enthesopathy of vitamin D-resistant osteomalacia in adults [in Italian]. Reumatismo 57:52–56PubMed
11.
Zurück zum Zitat Benjamin M, Tyers RN, Ralphs JR (1991) Age-related changes in tendon fibrocartilage. J Anat 179:127–136PubMed Benjamin M, Tyers RN, Ralphs JR (1991) Age-related changes in tendon fibrocartilage. J Anat 179:127–136PubMed
12.
Zurück zum Zitat Yost JH, Spencer-Green G, Brown LA (1994) Radiologic vignette, X-linked hypophosphatemia (familial vitamin D-resistant rickets). Arthritis Rheum 37:435–438PubMedCrossRef Yost JH, Spencer-Green G, Brown LA (1994) Radiologic vignette, X-linked hypophosphatemia (familial vitamin D-resistant rickets). Arthritis Rheum 37:435–438PubMedCrossRef
13.
Zurück zum Zitat Benjamin M, Evans EJ (1990) Fibrocartilage. J Anat 171:1–15PubMed Benjamin M, Evans EJ (1990) Fibrocartilage. J Anat 171:1–15PubMed
14.
Zurück zum Zitat Benjamin M, Moriggl B, Brenner E, Emery P, McGonagle D, Redman S (2004) The “enthesis organ” concept: why enthesopathies may not present as focal insertional disorders. Arthritis Rheum 50:3306–3313PubMedCrossRef Benjamin M, Moriggl B, Brenner E, Emery P, McGonagle D, Redman S (2004) The “enthesis organ” concept: why enthesopathies may not present as focal insertional disorders. Arthritis Rheum 50:3306–3313PubMedCrossRef
15.
Zurück zum Zitat de Bernard B, Bianco P, Bonucci E, Costantini M, Lunazzi GC, Martinuzzi P, Modricky C, Moro L, Panfili E, Pollesello P et al (1986) Biochemical and immunohistochemical evidence that in cartilage an alkaline phosphatase is a Ca2+-binding glycoprotein. J Cell Biol 103:1615–1623PubMedCrossRef de Bernard B, Bianco P, Bonucci E, Costantini M, Lunazzi GC, Martinuzzi P, Modricky C, Moro L, Panfili E, Pollesello P et al (1986) Biochemical and immunohistochemical evidence that in cartilage an alkaline phosphatase is a Ca2+-binding glycoprotein. J Cell Biol 103:1615–1623PubMedCrossRef
16.
Zurück zum Zitat Fujioka H, Wang GJ, Mizuno K, Balian G, Hurwitz SR (1997) Changes in the expression of type-X collagen in the fibrocartilage of rat Achilles tendon attachment during development. J Orthop Res 15:675–681PubMedCrossRef Fujioka H, Wang GJ, Mizuno K, Balian G, Hurwitz SR (1997) Changes in the expression of type-X collagen in the fibrocartilage of rat Achilles tendon attachment during development. J Orthop Res 15:675–681PubMedCrossRef
17.
Zurück zum Zitat Rufai A, Ralphs JR, Benjamin M (1995) Structure and histopathology of the insertional region of the human Achilles tendon. J Orthop Res 13:585–593PubMedCrossRef Rufai A, Ralphs JR, Benjamin M (1995) Structure and histopathology of the insertional region of the human Achilles tendon. J Orthop Res 13:585–593PubMedCrossRef
18.
Zurück zum Zitat Liu S, Vierthaler L, Tang W, Zhou J, Quarles LD (2008) FGFR3 and FGFR4 do not mediate renal effects of FGF-23. J Am Soc Nephrol 19:2342–2350PubMedCrossRef Liu S, Vierthaler L, Tang W, Zhou J, Quarles LD (2008) FGFR3 and FGFR4 do not mediate renal effects of FGF-23. J Am Soc Nephrol 19:2342–2350PubMedCrossRef
19.
Zurück zum Zitat Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF-23. Nature 444:770–774PubMedCrossRef Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF-23. Nature 444:770–774PubMedCrossRef
20.
Zurück zum Zitat Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281:6120–6123PubMedCrossRef Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281:6120–6123PubMedCrossRef
21.
Zurück zum Zitat Rufai A, Benjamin M, Ralphs JR (1992) Development and ageing of phenotypically distinct fibrocartilages associated with the rat Achilles tendon. Anat Embryol (Berl) 186:611–618 Rufai A, Benjamin M, Ralphs JR (1992) Development and ageing of phenotypically distinct fibrocartilages associated with the rat Achilles tendon. Anat Embryol (Berl) 186:611–618
22.
Zurück zum Zitat Benjamin M, Toumi H, Suzuki D, Hayashi K, McGonagle D (2009) Evidence for a distinctive pattern of bone formation in enthesophytes. Ann Rheum Dis 68:1003–1010PubMedCrossRef Benjamin M, Toumi H, Suzuki D, Hayashi K, McGonagle D (2009) Evidence for a distinctive pattern of bone formation in enthesophytes. Ann Rheum Dis 68:1003–1010PubMedCrossRef
23.
Zurück zum Zitat Murshed M, Harmey D, Millan JL, McKee MD, Karsenty G (2005) Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev 19:1093–1104PubMedCrossRef Murshed M, Harmey D, Millan JL, McKee MD, Karsenty G (2005) Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev 19:1093–1104PubMedCrossRef
24.
Zurück zum Zitat Broadus AE, Macica C, Chen X (2007) The PTHrP functional domain is at the gates of endochondral bones. Ann N Y Acad Sci 1116:65–81PubMedCrossRef Broadus AE, Macica C, Chen X (2007) The PTHrP functional domain is at the gates of endochondral bones. Ann N Y Acad Sci 1116:65–81PubMedCrossRef
25.
Zurück zum Zitat Jacenko O, Chan D, Franklin A, Ito S, Underhill CB, Bateman JF, Campbell MR (2001) A dominant interference collagen X mutation disrupts hypertrophic chondrocyte pericellular matrix and glycosaminoglycan and proteoglycan distribution in transgenic mice. Am J Pathol 159:2257–2269PubMed Jacenko O, Chan D, Franklin A, Ito S, Underhill CB, Bateman JF, Campbell MR (2001) A dominant interference collagen X mutation disrupts hypertrophic chondrocyte pericellular matrix and glycosaminoglycan and proteoglycan distribution in transgenic mice. Am J Pathol 159:2257–2269PubMed
26.
Zurück zum Zitat Kwan AP, Cummings CE, Chapman JA, Grant ME (1991) Macromolecular organization of chicken type X collagen in vitro. J Cell Biol 114:597–604PubMedCrossRef Kwan AP, Cummings CE, Chapman JA, Grant ME (1991) Macromolecular organization of chicken type X collagen in vitro. J Cell Biol 114:597–604PubMedCrossRef
27.
Zurück zum Zitat Luckman SP, Rees E, Kwan AP (2003) Partial characterization of cell-type X collagen interactions. Biochem J 372:485–493PubMedCrossRef Luckman SP, Rees E, Kwan AP (2003) Partial characterization of cell-type X collagen interactions. Biochem J 372:485–493PubMedCrossRef
28.
Zurück zum Zitat Kim HJ, Kirsch T (2008) Collagen/annexin V interactions regulate chondrocyte mineralization. J Biol Chem 283:10310–10317PubMedCrossRef Kim HJ, Kirsch T (2008) Collagen/annexin V interactions regulate chondrocyte mineralization. J Biol Chem 283:10310–10317PubMedCrossRef
29.
Zurück zum Zitat Benjamin M, Ralphs JR (1998) Fibrocartilage in tendons and ligaments—an adaptation to compressive load. J Anat 193:481–494PubMedCrossRef Benjamin M, Ralphs JR (1998) Fibrocartilage in tendons and ligaments—an adaptation to compressive load. J Anat 193:481–494PubMedCrossRef
30.
Zurück zum Zitat Benjamin M, Ralphs JR (2001) Entheses—the bony attachments of tendons and ligaments. Ital J Anat Embryol 106:151–157PubMed Benjamin M, Ralphs JR (2001) Entheses—the bony attachments of tendons and ligaments. Ital J Anat Embryol 106:151–157PubMed
31.
Zurück zum Zitat Benjamin M, Rufai A, Ralphs JR (2000) The mechanism of formation of bony spurs (enthesophytes) in the Achilles tendon. Arthritis Rheum 43:576–583PubMedCrossRef Benjamin M, Rufai A, Ralphs JR (2000) The mechanism of formation of bony spurs (enthesophytes) in the Achilles tendon. Arthritis Rheum 43:576–583PubMedCrossRef
32.
Zurück zum Zitat Camacho NP, Rimnac CM, Meyer RA Jr, Doty S, Boskey AL (1995) Effect of abnormal mineralization on the mechanical behavior of X-linked hypophosphatemic mice femora. Bone 17:271–278PubMedCrossRef Camacho NP, Rimnac CM, Meyer RA Jr, Doty S, Boskey AL (1995) Effect of abnormal mineralization on the mechanical behavior of X-linked hypophosphatemic mice femora. Bone 17:271–278PubMedCrossRef
33.
Zurück zum Zitat Meyer RA Jr, Meyer MH, Gray RW, Bruns ME (1995) Femoral abnormalities and vitamin D metabolism in X-linked hypophosphatemic (Hyp and Gy) mice. J Orthop Res 13:30–40PubMedCrossRef Meyer RA Jr, Meyer MH, Gray RW, Bruns ME (1995) Femoral abnormalities and vitamin D metabolism in X-linked hypophosphatemic (Hyp and Gy) mice. J Orthop Res 13:30–40PubMedCrossRef
34.
Zurück zum Zitat Shaw HM, Benjamin M (2007) Structure–function relationships of entheses in relation to mechanical load and exercise. Scand J Med Sci Sports 17:303–315PubMed Shaw HM, Benjamin M (2007) Structure–function relationships of entheses in relation to mechanical load and exercise. Scand J Med Sci Sports 17:303–315PubMed
35.
Zurück zum Zitat Evanko SP, Vogel KG (1993) Proteoglycan synthesis in fetal tendon is differentially regulated by cyclic compression in vitro. Arch Biochem Biophys 307:153–164PubMedCrossRef Evanko SP, Vogel KG (1993) Proteoglycan synthesis in fetal tendon is differentially regulated by cyclic compression in vitro. Arch Biochem Biophys 307:153–164PubMedCrossRef
36.
Zurück zum Zitat Koob TJ, Clark PE, Hernandez DJ, Thurmond FA, Vogel KG (1992) Compression loading in vitro regulates proteoglycan synthesis by tendon fibrocartilage. Arch Biochem Biophys 298:303–312PubMedCrossRef Koob TJ, Clark PE, Hernandez DJ, Thurmond FA, Vogel KG (1992) Compression loading in vitro regulates proteoglycan synthesis by tendon fibrocartilage. Arch Biochem Biophys 298:303–312PubMedCrossRef
37.
Zurück zum Zitat Thomopoulos S, Kim HM, Rothermich SY, Biederstadt C, Das R, Galatz LM (2007) Decreased muscle loading delays maturation of the tendon enthesis during postnatal development. J Orthop Res 25:1154–1163PubMedCrossRef Thomopoulos S, Kim HM, Rothermich SY, Biederstadt C, Das R, Galatz LM (2007) Decreased muscle loading delays maturation of the tendon enthesis during postnatal development. J Orthop Res 25:1154–1163PubMedCrossRef
38.
Zurück zum Zitat Argiro L, Desbarats M, Glorieux FH, Ecarot B (2001) Mepe, the gene encoding a tumor-secreted protein in oncogenic hypophosphatemic osteomalacia, is expressed in bone. Genomics 74:342–351PubMedCrossRef Argiro L, Desbarats M, Glorieux FH, Ecarot B (2001) Mepe, the gene encoding a tumor-secreted protein in oncogenic hypophosphatemic osteomalacia, is expressed in bone. Genomics 74:342–351PubMedCrossRef
39.
Zurück zum Zitat Rowe PS, Kumagai Y, Gutierrez G, Garrett IR, Blacher R, Rosen D, Cundy J, Navvab S, Chen D, Drezner MK, Quarles LD, Mundy GR (2004) MEPE has the properties of an osteoblastic phosphatonin and minhibin. Bone 34:303–319PubMedCrossRef Rowe PS, Kumagai Y, Gutierrez G, Garrett IR, Blacher R, Rosen D, Cundy J, Navvab S, Chen D, Drezner MK, Quarles LD, Mundy GR (2004) MEPE has the properties of an osteoblastic phosphatonin and minhibin. Bone 34:303–319PubMedCrossRef
40.
Zurück zum Zitat Addison WN, Nakano Y, Loisel T, Crine P, McKee MD (2008) MEPE-ASARM peptides control extracellular matrix mineralization by binding to hydroxyapatite: an inhibition regulated by PHEX cleavage of ASARM. J Bone Miner Res 23:1638–1649PubMedCrossRef Addison WN, Nakano Y, Loisel T, Crine P, McKee MD (2008) MEPE-ASARM peptides control extracellular matrix mineralization by binding to hydroxyapatite: an inhibition regulated by PHEX cleavage of ASARM. J Bone Miner Res 23:1638–1649PubMedCrossRef
41.
Zurück zum Zitat Rowe PS, Garrett IR, Schwarz PM, Carnes DL, Lafer EM, Mundy GR, Gutierrez GE (2005) Surface plasmon resonance (SPR) confirms that MEPE binds to PHEX via the MEPE-ASARM motif: a model for impaired mineralization in X-linked rickets (HYP). Bone 36:33–46PubMedCrossRef Rowe PS, Garrett IR, Schwarz PM, Carnes DL, Lafer EM, Mundy GR, Gutierrez GE (2005) Surface plasmon resonance (SPR) confirms that MEPE binds to PHEX via the MEPE-ASARM motif: a model for impaired mineralization in X-linked rickets (HYP). Bone 36:33–46PubMedCrossRef
42.
Zurück zum Zitat Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM (1996) Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 12:390–397PubMedCrossRef Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM (1996) Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 12:390–397PubMedCrossRef
43.
Zurück zum Zitat Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P (1996) Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84:911–921PubMedCrossRef Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P (1996) Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84:911–921PubMedCrossRef
44.
Zurück zum Zitat Eswarakumar VP, Schlessinger J (2007) Skeletal overgrowth is mediated by deficiency in a specific isoform of fibroblast growth factor receptor 3. Proc Natl Acad Sci USA 104:3937–3942PubMedCrossRef Eswarakumar VP, Schlessinger J (2007) Skeletal overgrowth is mediated by deficiency in a specific isoform of fibroblast growth factor receptor 3. Proc Natl Acad Sci USA 104:3937–3942PubMedCrossRef
45.
Zurück zum Zitat Davidson D, Blanc A, Filion D, Wang H, Plut P, Pfeffer G, Buschmann MD, Henderson JE (2005) Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis. J Biol Chem 280:20509–20515PubMedCrossRef Davidson D, Blanc A, Filion D, Wang H, Plut P, Pfeffer G, Buschmann MD, Henderson JE (2005) Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis. J Biol Chem 280:20509–20515PubMedCrossRef
46.
Zurück zum Zitat Dailey L, Ambrosetti D, Mansukhani A, Basilico C (2005) Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 16:233–247PubMedCrossRef Dailey L, Ambrosetti D, Mansukhani A, Basilico C (2005) Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 16:233–247PubMedCrossRef
47.
Zurück zum Zitat Iwata T, Chen L, Li C, Ovchinnikov DA, Behringer RR, Francomano CA, Deng CX (2000) A neonatal lethal mutation in FGFR3 uncouples proliferation and differentiation of growth plate chondrocytes in embryos. Hum Mol Genet 9:1603–1613PubMedCrossRef Iwata T, Chen L, Li C, Ovchinnikov DA, Behringer RR, Francomano CA, Deng CX (2000) A neonatal lethal mutation in FGFR3 uncouples proliferation and differentiation of growth plate chondrocytes in embryos. Hum Mol Genet 9:1603–1613PubMedCrossRef
48.
Zurück zum Zitat Eswarakumar VP, Lax I, Schlessinger J (2005) Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16:139–149PubMedCrossRef Eswarakumar VP, Lax I, Schlessinger J (2005) Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16:139–149PubMedCrossRef
49.
Zurück zum Zitat Gao J, Messner K, Ralphs JR, Benjamin M (1996) An immunohistochemical study of enthesis development in the medial collateral ligament of the rat knee joint. Anat Embryol (Berl) 194:399–406 Gao J, Messner K, Ralphs JR, Benjamin M (1996) An immunohistochemical study of enthesis development in the medial collateral ligament of the rat knee joint. Anat Embryol (Berl) 194:399–406
Metadaten
Titel
Survey of the Enthesopathy of X-Linked Hypophosphatemia and Its Characterization in Hyp Mice
verfasst von
Guoying Liang
Lee D. Katz
Karl L. Insogna
Thomas O. Carpenter
Carolyn M. Macica
Publikationsdatum
01.09.2009
Verlag
Springer-Verlag
Erschienen in
Calcified Tissue International / Ausgabe 3/2009
Print ISSN: 0171-967X
Elektronische ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-009-9270-6

Weitere Artikel der Ausgabe 3/2009

Calcified Tissue International 3/2009 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.