Skip to main content
Erschienen in: Calcified Tissue International 1/2011

01.01.2011

The Role of GH/IGF-I-Mediated Mechanisms in Sex Differences in Cortical Bone Size in Mice

verfasst von: Lisa E. Olson, Claes Ohlsson, Subburaman Mohan

Erschienen in: Calcified Tissue International | Ausgabe 1/2011

Einloggen, um Zugang zu erhalten

Abstract

Cortical bone dimensions are important determinants of bone strength. Gender differences in cortical bone size caused by greater periosteal expansion in males than in females during the pubertal growth spurt are well established both in humans and in experimental animal models. However, the mechanism by which gender influences cortical bone size is still a matter of investigation. The role of androgens and estrogen in pubertal bone growth has been examined in human disorders as well as animal models, such as gonadectomized or sex steroid receptor knockout mice. Based on the findings that growth hormone (GH) and insulin-like growth factor I (IGF-I) are major regulators of postnatal skeletal growth, we and others have predicted that sex hormones interact with the GH/IGF-I axis to regulate cortical bone size. However, studies conflict as to whether estrogen and androgens impact cortical bone size through the canonical pathway, through GH without IGF-I mediation, through IGF-I without GH stimulation, or independent of GH/IGF-I. We review recent data on the impact of sex steroids and components of the GH/IGF axis on sexual dimorphism in bone size. While the GH/IGF-I axis is a major player in regulating peak bone size, the relative contribution of GH/IGF-dependent mechanisms to sex differences in cortical bone size remains to be established.
Literatur
2.
Zurück zum Zitat Bouxsein ML, Karasik D (2006) Bone geometry and skeletal fragility. Curr Osteoporos Rep 4:49–56CrossRefPubMed Bouxsein ML, Karasik D (2006) Bone geometry and skeletal fragility. Curr Osteoporos Rep 4:49–56CrossRefPubMed
3.
Zurück zum Zitat Seeman E (2009) Bone modeling and remodeling. Crit Rev Eukaryot Gene Expr 19:219–233PubMed Seeman E (2009) Bone modeling and remodeling. Crit Rev Eukaryot Gene Expr 19:219–233PubMed
4.
Zurück zum Zitat Seeman E (2001) Clinical review 137. Sexual dimorphism in skeletal size, density, and strength. J Clin Endocrinol Metab 86:4576–4584CrossRefPubMed Seeman E (2001) Clinical review 137. Sexual dimorphism in skeletal size, density, and strength. J Clin Endocrinol Metab 86:4576–4584CrossRefPubMed
5.
Zurück zum Zitat Bachrach LK (2008) Skeletal development in childhood and adolescence. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. American Society for Bone and Mineral Research, Washington, DC, pp 74–79CrossRef Bachrach LK (2008) Skeletal development in childhood and adolescence. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. American Society for Bone and Mineral Research, Washington, DC, pp 74–79CrossRef
6.
Zurück zum Zitat Christoforidis A, Maniadaki I, Stanhope R (2005) Growth hormone/insulin-like growth factor-1 axis during puberty. Pediatr Endocrinol Rev 3:5–10PubMed Christoforidis A, Maniadaki I, Stanhope R (2005) Growth hormone/insulin-like growth factor-1 axis during puberty. Pediatr Endocrinol Rev 3:5–10PubMed
7.
Zurück zum Zitat Riggs BL, Khosla S, Melton LJ 3rd (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302CrossRefPubMed Riggs BL, Khosla S, Melton LJ 3rd (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302CrossRefPubMed
8.
Zurück zum Zitat Mauras N (2001) Growth hormone and sex steroids. Interactions in puberty. Endocrinol Metab Clin North Am 30:529–544CrossRefPubMed Mauras N (2001) Growth hormone and sex steroids. Interactions in puberty. Endocrinol Metab Clin North Am 30:529–544CrossRefPubMed
9.
Zurück zum Zitat Clark PA, Rogol AD (1996) Growth hormones and sex steroid interactions at puberty. Endocrinol Metab Clin North Am 25:665–681CrossRefPubMed Clark PA, Rogol AD (1996) Growth hormones and sex steroid interactions at puberty. Endocrinol Metab Clin North Am 25:665–681CrossRefPubMed
10.
Zurück zum Zitat Metzger DL, Kerrigan JR, Rogol AD (1994) Gonadal steroid hormone regulation of the somatotropic axis during puberty in humans: mechanisms of androgen and estrogen action. Trends Endocrinol Metab 5:290–296CrossRefPubMed Metzger DL, Kerrigan JR, Rogol AD (1994) Gonadal steroid hormone regulation of the somatotropic axis during puberty in humans: mechanisms of androgen and estrogen action. Trends Endocrinol Metab 5:290–296CrossRefPubMed
11.
Zurück zum Zitat Bautista CM, Mohan S, Baylink DJ (1990) Insulin-like growth factors I and II are present in the skeletal tissues of ten vertebrates. Metabolism 39:96–100CrossRefPubMed Bautista CM, Mohan S, Baylink DJ (1990) Insulin-like growth factors I and II are present in the skeletal tissues of ten vertebrates. Metabolism 39:96–100CrossRefPubMed
12.
Zurück zum Zitat Zhang XZ, Kalu DN, Erbas B, Hopper JL, Seeman E (1999) The effects of gonadectomy on bone size, mass, and volumetric density in growing rats are gender-, site-, and growth hormone-specific. J Bone Miner Res 14:802–809CrossRefPubMed Zhang XZ, Kalu DN, Erbas B, Hopper JL, Seeman E (1999) The effects of gonadectomy on bone size, mass, and volumetric density in growing rats are gender-, site-, and growth hormone-specific. J Bone Miner Res 14:802–809CrossRefPubMed
13.
Zurück zum Zitat Bikle D, Majumdar S, Laib A, Powell-Braxton L, Rosen C, Beamer W, Nauman E, Leary C, Halloran B (2001) The skeletal structure of insulin-like growth factor I–deficient mice. J Bone Miner Res 16:2320–2329CrossRefPubMed Bikle D, Majumdar S, Laib A, Powell-Braxton L, Rosen C, Beamer W, Nauman E, Leary C, Halloran B (2001) The skeletal structure of insulin-like growth factor I–deficient mice. J Bone Miner Res 16:2320–2329CrossRefPubMed
14.
Zurück zum Zitat Govoni KE, Wergedal JE, Florin L, Angel P, Baylink DJ, Mohan S (2007) Conditional deletion of insulin-like growth factor-I in collagen type 1alpha2-expressing cells results in postnatal lethality and a dramatic reduction in bone accretion. Endocrinology 148:5706–5715CrossRefPubMed Govoni KE, Wergedal JE, Florin L, Angel P, Baylink DJ, Mohan S (2007) Conditional deletion of insulin-like growth factor-I in collagen type 1alpha2-expressing cells results in postnatal lethality and a dramatic reduction in bone accretion. Endocrinology 148:5706–5715CrossRefPubMed
15.
Zurück zum Zitat Mohan S, Richman C, Guo R, Amaar Y, Donahue LR, Wergedal J, Baylink DJ (2003) Insulin-like growth factor regulates peak bone mineral density in mice by both growth hormone-dependent and -independent mechanisms. Endocrinology 144:929–936CrossRefPubMed Mohan S, Richman C, Guo R, Amaar Y, Donahue LR, Wergedal J, Baylink DJ (2003) Insulin-like growth factor regulates peak bone mineral density in mice by both growth hormone-dependent and -independent mechanisms. Endocrinology 144:929–936CrossRefPubMed
16.
Zurück zum Zitat Ohlsson C, Mohan S, Sjogren K, Tivesten A, Isgaard J, Isaksson O, Jansson JO, Svensson J (2009) The role of liver-derived insulin-like growth factor-I. Endocr Rev 30:494–535CrossRefPubMed Ohlsson C, Mohan S, Sjogren K, Tivesten A, Isgaard J, Isaksson O, Jansson JO, Svensson J (2009) The role of liver-derived insulin-like growth factor-I. Endocr Rev 30:494–535CrossRefPubMed
17.
Zurück zum Zitat Govoni KE, Lee SK, Chung YS, Behringer RR, Wergedal JE, Baylink DJ, Mohan S (2007) Disruption of insulin-like growth factor-I expression in type IIalphaI collagen-expressing cells reduces bone length and width in mice. Physiol Genomics 30:354–362CrossRefPubMed Govoni KE, Lee SK, Chung YS, Behringer RR, Wergedal JE, Baylink DJ, Mohan S (2007) Disruption of insulin-like growth factor-I expression in type IIalphaI collagen-expressing cells reduces bone length and width in mice. Physiol Genomics 30:354–362CrossRefPubMed
18.
Zurück zum Zitat Donahue LR, Beamer WG (1993) Growth hormone deficiency in “little” mice results in aberrant body composition, reduced insulin-like growth factor-I and insulin-like growth factor-binding protein-3 (IGFBP-3), but does not affect IGFBP-2, -1 or -4. J Endocrinol 136:91–104CrossRefPubMed Donahue LR, Beamer WG (1993) Growth hormone deficiency in “little” mice results in aberrant body composition, reduced insulin-like growth factor-I and insulin-like growth factor-binding protein-3 (IGFBP-3), but does not affect IGFBP-2, -1 or -4. J Endocrinol 136:91–104CrossRefPubMed
19.
Zurück zum Zitat Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75:59–72PubMed Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75:59–72PubMed
20.
Zurück zum Zitat DeChiara TM, Efstratiadis A, Robertson EJ (1990) A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345:78–80CrossRefPubMed DeChiara TM, Efstratiadis A, Robertson EJ (1990) A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345:78–80CrossRefPubMed
21.
Zurück zum Zitat Mohan S, Govoni K, Wergedal J (2008) Is growth hormone/IGF-I mediated mechanism involved in regulating gender differences in bone size? In: Proceedings of the American society for bone and mineral research 30th annual meeting, September 12–16, 2008, Montreal, Canada Mohan S, Govoni K, Wergedal J (2008) Is growth hormone/IGF-I mediated mechanism involved in regulating gender differences in bone size? In: Proceedings of the American society for bone and mineral research 30th annual meeting, September 12–16, 2008, Montreal, Canada
22.
Zurück zum Zitat Kim BT, Mosekilde L, Duan Y, Zhang XZ, Tornvig L, Thomsen JS, Seeman E (2003) The structural and hormonal basis of sex differences in peak appendicular bone strength in rats. J Bone Miner Res 18:150–155CrossRefPubMed Kim BT, Mosekilde L, Duan Y, Zhang XZ, Tornvig L, Thomsen JS, Seeman E (2003) The structural and hormonal basis of sex differences in peak appendicular bone strength in rats. J Bone Miner Res 18:150–155CrossRefPubMed
23.
Zurück zum Zitat Venken K, De Gendt K, Boonen S, Ophoff J, Bouillon R, Swinnen JV, Verhoeven G, Vanderschueren D (2006) Relative impact of androgen and estrogen receptor activation in the effects of androgens on trabecular and cortical bone in growing male mice: a study in the androgen receptor knockout mouse model. J Bone Miner Res 21:576–585CrossRefPubMed Venken K, De Gendt K, Boonen S, Ophoff J, Bouillon R, Swinnen JV, Verhoeven G, Vanderschueren D (2006) Relative impact of androgen and estrogen receptor activation in the effects of androgens on trabecular and cortical bone in growing male mice: a study in the androgen receptor knockout mouse model. J Bone Miner Res 21:576–585CrossRefPubMed
24.
Zurück zum Zitat Callewaert F, Venken K, Kopchick JJ, Torcasio A, van Lenthe GH, Boonen S, Vanderschueren D (2010) Sexual dimorphism in cortical bone size and strength but not density is determined by independent and time-specific actions of sex steroids and IGF-1: evidence from pubertal mouse models. J Bone Miner Res 25:617–626CrossRefPubMed Callewaert F, Venken K, Kopchick JJ, Torcasio A, van Lenthe GH, Boonen S, Vanderschueren D (2010) Sexual dimorphism in cortical bone size and strength but not density is determined by independent and time-specific actions of sex steroids and IGF-1: evidence from pubertal mouse models. J Bone Miner Res 25:617–626CrossRefPubMed
25.
Zurück zum Zitat Govoni KE, Wergedal JE, Chadwick RB, Srivastava AK, Mohan S (2008) Prepubertal OVX increases IGF-I expression and bone accretion in C57BL/6J mice. Am J Physiol Endocrinol Metab 295:E1172–E1180CrossRefPubMed Govoni KE, Wergedal JE, Chadwick RB, Srivastava AK, Mohan S (2008) Prepubertal OVX increases IGF-I expression and bone accretion in C57BL/6J mice. Am J Physiol Endocrinol Metab 295:E1172–E1180CrossRefPubMed
26.
Zurück zum Zitat Turner RT, Wakley GK, Hannon KS (1990) Differential effects of androgens on cortical bone histomorphometry in gonadectomized male and female rats. J Orthop Res 8:612–617CrossRefPubMed Turner RT, Wakley GK, Hannon KS (1990) Differential effects of androgens on cortical bone histomorphometry in gonadectomized male and female rats. J Orthop Res 8:612–617CrossRefPubMed
27.
Zurück zum Zitat Frank GR (2003) Role of estrogen and androgen in pubertal skeletal physiology. Med Pediatr Oncol 41:217–221CrossRefPubMed Frank GR (2003) Role of estrogen and androgen in pubertal skeletal physiology. Med Pediatr Oncol 41:217–221CrossRefPubMed
28.
29.
Zurück zum Zitat Meinhardt UJ, Ho KK (2006) Modulation of growth hormone action by sex steroids. Clin Endocrinol (Oxf) 65:413–422CrossRef Meinhardt UJ, Ho KK (2006) Modulation of growth hormone action by sex steroids. Clin Endocrinol (Oxf) 65:413–422CrossRef
31.
Zurück zum Zitat Cutler GB Jr (1997) The role of estrogen in bone growth and maturation during childhood and adolescence. J Steroid Biochem Mol Biol 61:141–144CrossRefPubMed Cutler GB Jr (1997) The role of estrogen in bone growth and maturation during childhood and adolescence. J Steroid Biochem Mol Biol 61:141–144CrossRefPubMed
32.
Zurück zum Zitat Vanderschueren D, Venken K, Ophoff J, Bouillon R, Boonen S (2006) Clinical review. Sex steroids and the periosteum—reconsidering the roles of androgens and estrogens in periosteal expansion. J Clin Endocrinol Metab 91:378–382CrossRefPubMed Vanderschueren D, Venken K, Ophoff J, Bouillon R, Boonen S (2006) Clinical review. Sex steroids and the periosteum—reconsidering the roles of androgens and estrogens in periosteal expansion. J Clin Endocrinol Metab 91:378–382CrossRefPubMed
33.
Zurück zum Zitat Vanderschueren D, van Herck E, Nijs J, Ederveen AG, De Coster R, Bouillon R (1997) Aromatase inhibition impairs skeletal modeling and decreases bone mineral density in growing male rats. Endocrinology 138:2301–2307CrossRefPubMed Vanderschueren D, van Herck E, Nijs J, Ederveen AG, De Coster R, Bouillon R (1997) Aromatase inhibition impairs skeletal modeling and decreases bone mineral density in growing male rats. Endocrinology 138:2301–2307CrossRefPubMed
34.
Zurück zum Zitat Sjogren K, Lagerquist M, Moverare-Skrtic S, Andersson N, Windahl SH, Swanson C, Mohan S, Poutanen M, Ohlsson C (2009) Elevated aromatase expression in osteoblasts leads to increased bone mass without systemic adverse effects. J Bone Miner Res 24:1263–1270CrossRefPubMed Sjogren K, Lagerquist M, Moverare-Skrtic S, Andersson N, Windahl SH, Swanson C, Mohan S, Poutanen M, Ohlsson C (2009) Elevated aromatase expression in osteoblasts leads to increased bone mass without systemic adverse effects. J Bone Miner Res 24:1263–1270CrossRefPubMed
35.
Zurück zum Zitat Fritton JC, Emerton KB, Sun H, Kawashima Y, Mejia W, Wu Y, Rosen CJ, Panus D, Bouxsein M, Majeska RJ, Schaffler MB, Yakar S (2010) Growth hormone protects against ovariectomy-induced bone loss in states of low circulating insulin-like growth factor (IGF-1). J Bone Miner Res 25:235–246CrossRefPubMed Fritton JC, Emerton KB, Sun H, Kawashima Y, Mejia W, Wu Y, Rosen CJ, Panus D, Bouxsein M, Majeska RJ, Schaffler MB, Yakar S (2010) Growth hormone protects against ovariectomy-induced bone loss in states of low circulating insulin-like growth factor (IGF-1). J Bone Miner Res 25:235–246CrossRefPubMed
36.
Zurück zum Zitat Perrien DS, Akel NS, Edwards PK, Carver AA, Bendre MS, Swain FL, Skinner RA, Hogue WR, Nicks KM, Pierson TM, Suva LJ, Gaddy D (2007) Inhibin A is an endocrine stimulator of bone mass and strength. Endocrinology 148:1654–1665CrossRefPubMed Perrien DS, Akel NS, Edwards PK, Carver AA, Bendre MS, Swain FL, Skinner RA, Hogue WR, Nicks KM, Pierson TM, Suva LJ, Gaddy D (2007) Inhibin A is an endocrine stimulator of bone mass and strength. Endocrinology 148:1654–1665CrossRefPubMed
37.
Zurück zum Zitat Belgorosky A, Baquedano MS, Guercio G, Rivarola MA (2008) Adrenarche: postnatal adrenal zonation and hormonal and metabolic regulation. Horm Res 70:257–267CrossRefPubMed Belgorosky A, Baquedano MS, Guercio G, Rivarola MA (2008) Adrenarche: postnatal adrenal zonation and hormonal and metabolic regulation. Horm Res 70:257–267CrossRefPubMed
38.
Zurück zum Zitat Remer T, Boye KR, Hartmann M, Neu CM, Schoenau E, Manz F, Wudy SA (2003) Adrenarche and bone modeling and remodeling at the proximal radius: weak androgens make stronger cortical bone in healthy children. J Bone Miner Res 18:1539–1546CrossRefPubMed Remer T, Boye KR, Hartmann M, Neu CM, Schoenau E, Manz F, Wudy SA (2003) Adrenarche and bone modeling and remodeling at the proximal radius: weak androgens make stronger cortical bone in healthy children. J Bone Miner Res 18:1539–1546CrossRefPubMed
39.
Zurück zum Zitat Cutler GB Jr, Loriaux DL (1980) Andrenarche and its relationship to the onset of puberty. Fed Proc 39:2384–2390PubMed Cutler GB Jr, Loriaux DL (1980) Andrenarche and its relationship to the onset of puberty. Fed Proc 39:2384–2390PubMed
40.
Zurück zum Zitat Labrie F, Cusan L, Gomez JL, Martel C, Berube R, Belanger P, Belanger A, Vandenput L, Mellstrom D, Ohlsson C (2009) Comparable amounts of sex steroids are made outside the gonads in men and women: strong lesson for hormone therapy of prostate and breast cancer. J Steroid Biochem Mol Biol 113:52–56CrossRefPubMed Labrie F, Cusan L, Gomez JL, Martel C, Berube R, Belanger P, Belanger A, Vandenput L, Mellstrom D, Ohlsson C (2009) Comparable amounts of sex steroids are made outside the gonads in men and women: strong lesson for hormone therapy of prostate and breast cancer. J Steroid Biochem Mol Biol 113:52–56CrossRefPubMed
41.
Zurück zum Zitat Pignatelli D, Xiao F, Gouveia AM, Ferreira JG, Vinson GP (2006) Adrenarche in the rat. J Endocrinol 191:301–308CrossRefPubMed Pignatelli D, Xiao F, Gouveia AM, Ferreira JG, Vinson GP (2006) Adrenarche in the rat. J Endocrinol 191:301–308CrossRefPubMed
42.
Zurück zum Zitat Johnsen IK, Slawik M, Shapiro I, Hartmann MF, Wudy SA, Looyenga BD, Hammer GD, Reincke M, Beuschlein F (2006) Gonadectomy in mice of the inbred strain CE/J induces proliferation of sub-capsular adrenal cells expressing gonadal marker genes. J Endocrinol 190:47–57CrossRefPubMed Johnsen IK, Slawik M, Shapiro I, Hartmann MF, Wudy SA, Looyenga BD, Hammer GD, Reincke M, Beuschlein F (2006) Gonadectomy in mice of the inbred strain CE/J induces proliferation of sub-capsular adrenal cells expressing gonadal marker genes. J Endocrinol 190:47–57CrossRefPubMed
43.
Zurück zum Zitat Grunt JA (1964) Effects of adrenalectomy and gonadectomy on growth and development in the rat. Endocrinology 75:446–451CrossRefPubMed Grunt JA (1964) Effects of adrenalectomy and gonadectomy on growth and development in the rat. Endocrinology 75:446–451CrossRefPubMed
44.
Zurück zum Zitat Simpson ER, Clyne C, Rubin G, Boon WC, Robertson K, Britt K, Speed C, Jones M (2002) Aromatase—a brief overview. Annu Rev Physiol 64:93–127CrossRefPubMed Simpson ER, Clyne C, Rubin G, Boon WC, Robertson K, Britt K, Speed C, Jones M (2002) Aromatase—a brief overview. Annu Rev Physiol 64:93–127CrossRefPubMed
45.
Zurück zum Zitat Zhao H, Innes J, Brooks DC, Reierstad S, Yilmaz MB, Lin Z, Bulun SE (2009) A novel promoter controls Cyp19a1 gene expression in mouse adipose tissue. Reprod Biol Endocrinol 7:37CrossRefPubMed Zhao H, Innes J, Brooks DC, Reierstad S, Yilmaz MB, Lin Z, Bulun SE (2009) A novel promoter controls Cyp19a1 gene expression in mouse adipose tissue. Reprod Biol Endocrinol 7:37CrossRefPubMed
46.
Zurück zum Zitat Lindberg MK, Alatalo SL, Halleen JM, Mohan S, Gustafsson JA, Ohlsson C (2001) Estrogen receptor specificity in the regulation of the skeleton in female mice. J Endocrinol 171:229–236CrossRefPubMed Lindberg MK, Alatalo SL, Halleen JM, Mohan S, Gustafsson JA, Ohlsson C (2001) Estrogen receptor specificity in the regulation of the skeleton in female mice. J Endocrinol 171:229–236CrossRefPubMed
47.
Zurück zum Zitat Vidal O, Lindberg MK, Hollberg K, Baylink DJ, Andersson G, Lubahn DB, Mohan S, Gustafsson JA, Ohlsson C (2000) Estrogen receptor specificity in the regulation of skeletal growth and maturation in male mice. Proc Natl Acad Sci USA 97:5474–5479CrossRefPubMed Vidal O, Lindberg MK, Hollberg K, Baylink DJ, Andersson G, Lubahn DB, Mohan S, Gustafsson JA, Ohlsson C (2000) Estrogen receptor specificity in the regulation of skeletal growth and maturation in male mice. Proc Natl Acad Sci USA 97:5474–5479CrossRefPubMed
48.
Zurück zum Zitat Windahl SH, Vidal O, Andersson G, Gustafsson JA, Ohlsson C (1999) Increased cortical bone mineral content but unchanged trabecular bone mineral density in female ERbeta(−/−) mice. J Clin Invest 104:895–901CrossRefPubMed Windahl SH, Vidal O, Andersson G, Gustafsson JA, Ohlsson C (1999) Increased cortical bone mineral content but unchanged trabecular bone mineral density in female ERbeta(−/−) mice. J Clin Invest 104:895–901CrossRefPubMed
49.
Zurück zum Zitat Vandenput L, Ederveen AG, Erben RG, Stahr K, Swinnen JV, Van Herck E, Verstuyf A, Boonen S, Bouillon R, Vanderschueren D (2001) Testosterone prevents orchidectomy-induced bone loss in estrogen receptor-alpha knockout mice. Biochem Biophys Res Commun 285:70–76CrossRefPubMed Vandenput L, Ederveen AG, Erben RG, Stahr K, Swinnen JV, Van Herck E, Verstuyf A, Boonen S, Bouillon R, Vanderschueren D (2001) Testosterone prevents orchidectomy-induced bone loss in estrogen receptor-alpha knockout mice. Biochem Biophys Res Commun 285:70–76CrossRefPubMed
50.
Zurück zum Zitat Callewaert F, Venken K, Ophoff J, De Gendt K, Torcasio A, van Lenthe GH, Van Oosterwyck H, Boonen S, Bouillon R, Verhoeven G, Vanderschueren D (2009) Differential regulation of bone and body composition in male mice with combined inactivation of androgen and estrogen receptor-alpha. FASEB J 23:232–240CrossRefPubMed Callewaert F, Venken K, Ophoff J, De Gendt K, Torcasio A, van Lenthe GH, Van Oosterwyck H, Boonen S, Bouillon R, Verhoeven G, Vanderschueren D (2009) Differential regulation of bone and body composition in male mice with combined inactivation of androgen and estrogen receptor-alpha. FASEB J 23:232–240CrossRefPubMed
51.
Zurück zum Zitat Kousteni S, Bellido T, Plotkin LI, O’Brien CA, Bodenner DL, Han L, Han K, DiGregorio GB, Katzenellenbogen JA, Katzenellenbogen BS, Roberson PK, Weinstein RS, Jilka RL, Manolagas SC (2001) Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104:719–730PubMed Kousteni S, Bellido T, Plotkin LI, O’Brien CA, Bodenner DL, Han L, Han K, DiGregorio GB, Katzenellenbogen JA, Katzenellenbogen BS, Roberson PK, Weinstein RS, Jilka RL, Manolagas SC (2001) Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104:719–730PubMed
52.
Zurück zum Zitat Voide R, van Lenthe GH, Muller R (2008) Bone morphometry strongly predicts cortical bone stiffness and strength, but not toughness, in inbred mouse models of high and low bone mass. J Bone Miner Res 23:1194–1203CrossRefPubMed Voide R, van Lenthe GH, Muller R (2008) Bone morphometry strongly predicts cortical bone stiffness and strength, but not toughness, in inbred mouse models of high and low bone mass. J Bone Miner Res 23:1194–1203CrossRefPubMed
53.
Zurück zum Zitat Volkman SK, Galecki AT, Burke DT, Paczas MR, Moalli MR, Miller RA, Goldstein SA (2003) Quantitative trait loci for femoral size and shape in a genetically heterogeneous mouse population. J Bone Miner Res 18:1497–1505CrossRefPubMed Volkman SK, Galecki AT, Burke DT, Paczas MR, Moalli MR, Miller RA, Goldstein SA (2003) Quantitative trait loci for femoral size and shape in a genetically heterogeneous mouse population. J Bone Miner Res 18:1497–1505CrossRefPubMed
54.
Zurück zum Zitat Veldhuis JD, Metzger DL, Martha PM Jr, Mauras N, Kerrigan JR, Keenan B, Rogol AD, Pincus SM (1997) Estrogen and testosterone, but not a nonaromatizable androgen, direct network integration of the hypothalamo-somatotrope (growth hormone)-insulin-like growth factor I axis in the human: evidence from pubertal pathophysiology and sex-steroid hormone replacement. J Clin Endocrinol Metab 82:3414–3420CrossRefPubMed Veldhuis JD, Metzger DL, Martha PM Jr, Mauras N, Kerrigan JR, Keenan B, Rogol AD, Pincus SM (1997) Estrogen and testosterone, but not a nonaromatizable androgen, direct network integration of the hypothalamo-somatotrope (growth hormone)-insulin-like growth factor I axis in the human: evidence from pubertal pathophysiology and sex-steroid hormone replacement. J Clin Endocrinol Metab 82:3414–3420CrossRefPubMed
55.
Zurück zum Zitat Leung KC, Johannsson G, Leong GM, Ho KK (2004) Estrogen regulation of growth hormone action. Endocr Rev 25:693–721CrossRefPubMed Leung KC, Johannsson G, Leong GM, Ho KK (2004) Estrogen regulation of growth hormone action. Endocr Rev 25:693–721CrossRefPubMed
56.
Zurück zum Zitat Cohen P, Bright GM, Rogol AD, Kappelgaard AM, Rosenfeld RG (2002) Effects of dose and gender on the growth and growth factor response to GH in GH-deficient children: implications for efficacy and safety. J Clin Endocrinol Metab 87:90–98CrossRefPubMed Cohen P, Bright GM, Rogol AD, Kappelgaard AM, Rosenfeld RG (2002) Effects of dose and gender on the growth and growth factor response to GH in GH-deficient children: implications for efficacy and safety. J Clin Endocrinol Metab 87:90–98CrossRefPubMed
57.
Zurück zum Zitat Span JP, Pieters GF, Sweep CG, Hermus AR, Smals AG (2000) Gender difference in insulin-like growth factor I response to growth hormone (GH) treatment in GH-deficient adults: role of sex hormone replacement. J Clin Endocrinol Metab 85:1121–1125CrossRefPubMed Span JP, Pieters GF, Sweep CG, Hermus AR, Smals AG (2000) Gender difference in insulin-like growth factor I response to growth hormone (GH) treatment in GH-deficient adults: role of sex hormone replacement. J Clin Endocrinol Metab 85:1121–1125CrossRefPubMed
58.
Zurück zum Zitat Venken K, Schuit F, Van Lommel L, Tsukamoto K, Kopchick JJ, Coschigano K, Ohlsson C, Moverare S, Boonen S, Bouillon R, Vanderschueren D (2005) Growth without growth hormone receptor: estradiol is a major growth hormone–independent regulator of hepatic IGF-I synthesis. J Bone Miner Res 20:2138–2149CrossRefPubMed Venken K, Schuit F, Van Lommel L, Tsukamoto K, Kopchick JJ, Coschigano K, Ohlsson C, Moverare S, Boonen S, Bouillon R, Vanderschueren D (2005) Growth without growth hormone receptor: estradiol is a major growth hormone–independent regulator of hepatic IGF-I synthesis. J Bone Miner Res 20:2138–2149CrossRefPubMed
59.
Zurück zum Zitat Mauras N, Rogol AD, Haymond MW, Veldhuis JD (1996) Sex steroids, growth hormone, insulin-like growth factor-1: neuroendocrine and metabolic regulation in puberty. Horm Res 45:74–80CrossRefPubMed Mauras N, Rogol AD, Haymond MW, Veldhuis JD (1996) Sex steroids, growth hormone, insulin-like growth factor-1: neuroendocrine and metabolic regulation in puberty. Horm Res 45:74–80CrossRefPubMed
60.
Zurück zum Zitat Venken K, Moverare-Skrtic S, Kopchick JJ, Coschigano KT, Ohlsson C, Boonen S, Bouillon R, Vanderschueren D (2007) Impact of androgens, growth hormone, and IGF-I on bone and muscle in male mice during puberty. J Bone Miner Res 22:72–82CrossRefPubMed Venken K, Moverare-Skrtic S, Kopchick JJ, Coschigano KT, Ohlsson C, Boonen S, Bouillon R, Vanderschueren D (2007) Impact of androgens, growth hormone, and IGF-I on bone and muscle in male mice during puberty. J Bone Miner Res 22:72–82CrossRefPubMed
61.
Zurück zum Zitat Salih DA, Mohan S, Kasukawa Y, Tripathi G, Lovett FA, Anderson NF, Carter EJ, Wergedal JE, Baylink DJ, Pell JM (2005) Insulin-like growth factor-binding protein-5 induces a gender-related decrease in bone mineral density in transgenic mice. Endocrinology 146:931–940CrossRefPubMed Salih DA, Mohan S, Kasukawa Y, Tripathi G, Lovett FA, Anderson NF, Carter EJ, Wergedal JE, Baylink DJ, Pell JM (2005) Insulin-like growth factor-binding protein-5 induces a gender-related decrease in bone mineral density in transgenic mice. Endocrinology 146:931–940CrossRefPubMed
62.
Zurück zum Zitat DeMambro VE, Clemmons DR, Horton LG, Bouxsein ML, Wood TL, Beamer WG, Canalis E, Rosen CJ (2008) Gender-specific changes in bone turnover and skeletal architecture in igfbp-2-null mice. Endocrinology 149:2051–2061CrossRefPubMed DeMambro VE, Clemmons DR, Horton LG, Bouxsein ML, Wood TL, Beamer WG, Canalis E, Rosen CJ (2008) Gender-specific changes in bone turnover and skeletal architecture in igfbp-2-null mice. Endocrinology 149:2051–2061CrossRefPubMed
63.
Zurück zum Zitat Courtland HW, DeMambro V, Maynard J, Sun H, Elis S, Rosen C, Yakar S (2010) Sex-specific regulation of body size and bone slenderness by the acid labile subunit. J Bone Miner Res 25:2059–2068CrossRefPubMed Courtland HW, DeMambro V, Maynard J, Sun H, Elis S, Rosen C, Yakar S (2010) Sex-specific regulation of body size and bone slenderness by the acid labile subunit. J Bone Miner Res 25:2059–2068CrossRefPubMed
64.
Zurück zum Zitat Vanderschueren D, Vandenput L, Boonen S, Lindberg MK, Bouillon R, Ohlsson C (2004) Androgens and bone. Endocr Rev 25:389–425CrossRefPubMed Vanderschueren D, Vandenput L, Boonen S, Lindberg MK, Bouillon R, Ohlsson C (2004) Androgens and bone. Endocr Rev 25:389–425CrossRefPubMed
65.
Zurück zum Zitat Michael H, Harkonen PL, Vaananen HK, Hentunen TA (2005) Estrogen and testosterone use different cellular pathways to inhibit osteoclastogenesis and bone resorption. J Bone Miner Res 20:2224–2232CrossRefPubMed Michael H, Harkonen PL, Vaananen HK, Hentunen TA (2005) Estrogen and testosterone use different cellular pathways to inhibit osteoclastogenesis and bone resorption. J Bone Miner Res 20:2224–2232CrossRefPubMed
66.
Zurück zum Zitat Hughes DE, Dai A, Tiffee JC, Li HH, Mundy GR, Boyce BF (1996) Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat Med 2:1132–1136CrossRefPubMed Hughes DE, Dai A, Tiffee JC, Li HH, Mundy GR, Boyce BF (1996) Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat Med 2:1132–1136CrossRefPubMed
67.
Zurück zum Zitat Wiren KM, Toombs AR, Zhang XW (2004) Androgen inhibition of MAP kinase pathway and Elk-1 activation in proliferating osteoblasts. J Mol Endocrinol 32:209–226CrossRefPubMed Wiren KM, Toombs AR, Zhang XW (2004) Androgen inhibition of MAP kinase pathway and Elk-1 activation in proliferating osteoblasts. J Mol Endocrinol 32:209–226CrossRefPubMed
68.
Zurück zum Zitat Wiren KM, Zhang XW, Toombs AR, Kasparcova V, Gentile MA, Harada S, Jepsen KJ (2004) Targeted overexpression of androgen receptor in osteoblasts: unexpected complex bone phenotype in growing animals. Endocrinology 145:3507–3522CrossRefPubMed Wiren KM, Zhang XW, Toombs AR, Kasparcova V, Gentile MA, Harada S, Jepsen KJ (2004) Targeted overexpression of androgen receptor in osteoblasts: unexpected complex bone phenotype in growing animals. Endocrinology 145:3507–3522CrossRefPubMed
69.
Zurück zum Zitat Gori F, Hofbauer LC, Conover CA, Khosla S (1999) Effects of androgens on the insulin-like growth factor system in an androgen-responsive human osteoblastic cell line. Endocrinology 140:5579–5586CrossRefPubMed Gori F, Hofbauer LC, Conover CA, Khosla S (1999) Effects of androgens on the insulin-like growth factor system in an androgen-responsive human osteoblastic cell line. Endocrinology 140:5579–5586CrossRefPubMed
70.
Zurück zum Zitat Turner RT, Kidder LS, Zhang M, Harris SA, Westerlind KC, Maran A, Wronski TJ (1999) Estrogen has rapid tissue-specific effects on rat bone. J Appl Physiol 86:1950–1958PubMed Turner RT, Kidder LS, Zhang M, Harris SA, Westerlind KC, Maran A, Wronski TJ (1999) Estrogen has rapid tissue-specific effects on rat bone. J Appl Physiol 86:1950–1958PubMed
71.
Zurück zum Zitat Kearns AE, Khosla S, Kostenuik PJ (2008) Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 29:155–192CrossRefPubMed Kearns AE, Khosla S, Kostenuik PJ (2008) Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 29:155–192CrossRefPubMed
72.
Zurück zum Zitat Wiren KM (2005) Androgens and bone growth: it’s location, location, location. Curr Opin Pharmacol 5:626–632CrossRefPubMed Wiren KM (2005) Androgens and bone growth: it’s location, location, location. Curr Opin Pharmacol 5:626–632CrossRefPubMed
73.
Zurück zum Zitat Jessop HL, Sjoberg M, Cheng MZ, Zaman G, Wheeler-Jones CP, Lanyon LE (2001) Mechanical strain and estrogen activate estrogen receptor alpha in bone cells. J Bone Miner Res 16:1045–1055CrossRefPubMed Jessop HL, Sjoberg M, Cheng MZ, Zaman G, Wheeler-Jones CP, Lanyon LE (2001) Mechanical strain and estrogen activate estrogen receptor alpha in bone cells. J Bone Miner Res 16:1045–1055CrossRefPubMed
74.
Zurück zum Zitat Aguirre JI, Plotkin LI, Gortazar AR, Millan MM, O’Brien CA, Manolagas SC, Bellido T (2007) A novel ligand-independent function of the estrogen receptor is essential for osteocyte and osteoblast mechanotransduction. J Biol Chem 282:25501–25508CrossRefPubMed Aguirre JI, Plotkin LI, Gortazar AR, Millan MM, O’Brien CA, Manolagas SC, Bellido T (2007) A novel ligand-independent function of the estrogen receptor is essential for osteocyte and osteoblast mechanotransduction. J Biol Chem 282:25501–25508CrossRefPubMed
75.
Zurück zum Zitat Saxon LK, Robling AG, Castillo AB, Mohan S, Turner CH (2007) The skeletal responsiveness to mechanical loading is enhanced in mice with a null mutation in estrogen receptor-beta. Am J Physiol Endocrinol Metab 293:E484–E491CrossRefPubMed Saxon LK, Robling AG, Castillo AB, Mohan S, Turner CH (2007) The skeletal responsiveness to mechanical loading is enhanced in mice with a null mutation in estrogen receptor-beta. Am J Physiol Endocrinol Metab 293:E484–E491CrossRefPubMed
76.
Zurück zum Zitat Lee KC, Jessop H, Suswillo R, Zaman G, Lanyon LE (2004) The adaptive response of bone to mechanical loading in female transgenic mice is deficient in the absence of oestrogen receptor-alpha and -beta. J Endocrinol 182:193–201CrossRefPubMed Lee KC, Jessop H, Suswillo R, Zaman G, Lanyon LE (2004) The adaptive response of bone to mechanical loading in female transgenic mice is deficient in the absence of oestrogen receptor-alpha and -beta. J Endocrinol 182:193–201CrossRefPubMed
77.
Zurück zum Zitat Damien E, Price JS, Lanyon LE (2000) Mechanical strain stimulates osteoblast proliferation through the estrogen receptor in males as well as females. J Bone Miner Res 15:2169–2177CrossRefPubMed Damien E, Price JS, Lanyon LE (2000) Mechanical strain stimulates osteoblast proliferation through the estrogen receptor in males as well as females. J Bone Miner Res 15:2169–2177CrossRefPubMed
78.
Zurück zum Zitat Cheng MZ, Rawlinson SC, Pitsillides AA, Zaman G, Mohan S, Baylink DJ, Lanyon LE (2002) Human osteoblasts’ proliferative responses to strain and 17beta-estradiol are mediated by the estrogen receptor and the receptor for insulin-like growth factor I. J Bone Miner Res 17:593–602CrossRefPubMed Cheng MZ, Rawlinson SC, Pitsillides AA, Zaman G, Mohan S, Baylink DJ, Lanyon LE (2002) Human osteoblasts’ proliferative responses to strain and 17beta-estradiol are mediated by the estrogen receptor and the receptor for insulin-like growth factor I. J Bone Miner Res 17:593–602CrossRefPubMed
79.
Zurück zum Zitat Zofkova I (2008) Hormonal aspects of the muscle-bone unit. Physiol Res 57(Suppl 1):S159–S169PubMed Zofkova I (2008) Hormonal aspects of the muscle-bone unit. Physiol Res 57(Suppl 1):S159–S169PubMed
80.
Zurück zum Zitat Ophoff J, Van Proeyen K, Callewaert F, De Gendt K, De Bock K, Vanden Bosch A, Verhoeven G, Hespel P, Vanderschueren D (2009) Androgen signaling in myocytes contributes to the maintenance of muscle mass and fiber type regulation but not to muscle strength or fatigue. Endocrinology 150:3558–3566CrossRefPubMed Ophoff J, Van Proeyen K, Callewaert F, De Gendt K, De Bock K, Vanden Bosch A, Verhoeven G, Hespel P, Vanderschueren D (2009) Androgen signaling in myocytes contributes to the maintenance of muscle mass and fiber type regulation but not to muscle strength or fatigue. Endocrinology 150:3558–3566CrossRefPubMed
Metadaten
Titel
The Role of GH/IGF-I-Mediated Mechanisms in Sex Differences in Cortical Bone Size in Mice
verfasst von
Lisa E. Olson
Claes Ohlsson
Subburaman Mohan
Publikationsdatum
01.01.2011
Verlag
Springer-Verlag
Erschienen in
Calcified Tissue International / Ausgabe 1/2011
Print ISSN: 0171-967X
Elektronische ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-010-9436-2

Weitere Artikel der Ausgabe 1/2011

Calcified Tissue International 1/2011 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.