Skip to main content
Erschienen in: Calcified Tissue International 5/2012

01.05.2012 | Original Research

(–)-Epigallocathechin-3-Gallate, an AMPK Activator, Decreases Ovariectomy-Induced Bone Loss by Suppression of Bone Resorption

verfasst von: Seung Hun Lee, Beom-Jun Kim, Hyung Jin Choi, Sun Wook Cho, Chan Soo Shin, Sook-Young Park, Young-Sun Lee, Sun-Young Lee, Hong-Hee Kim, Ghi Su Kim, Jung-Min Koh

Erschienen in: Calcified Tissue International | Ausgabe 5/2012

Einloggen, um Zugang zu erhalten

Abstract

Previously, we showed that AMP-activated protein kinase (AMPK) negatively regulates receptor activator of nuclear factor-κB ligand-induced osteoclast formation in vitro. The present study investigated the effect of (–)-epigallocathechin-3-gallate (EGCG), an AMPK activator, on ovariectomy (OVX)-induced bone loss in mice. Female mice subjected to OVX were administered EGCG for 8 weeks. We measured total-body bone mineral density (BMD) before and after the operation at an interval of 4 weeks. We performed micro-computed tomography (micro-CT) of the tibia and bone histomorphometric examination of the femur. Western blot analysis was additionally performed, to detect levels of the phosphorylated and total forms of AMPK-α in calvarial extracts. EGCG prevented OVX-induced body weight gain. The OVX control did not show a significant increase in BMD values at baseline and after treatment, unlike the sham control. EGCG attenuated OVX-induced bone loss. Micro-CT experiments revealed that EGCG induced a significant increase in trabecular bone volume and trabecular number and a decrease in trabecular spacing compared to the OVX control. Histomorphometric analyses further showed that EGCG suppressed osteoclast surface and number. Phosphorylated AMPK expression was significantly elevated in bone following EGCG treatment. Our findings collectively indicate that EGCG decreases OVX-induced bone loss via inhibition of osteoclasts.
Literatur
2.
Zurück zum Zitat Brown D, Breton S (1996) Mitochondria-rich, proton-secreting epithelial cells. J Exp Biol 199:2345–2358PubMed Brown D, Breton S (1996) Mitochondria-rich, proton-secreting epithelial cells. J Exp Biol 199:2345–2358PubMed
3.
Zurück zum Zitat Canalis E, Giustina A, Bilezikian JP (2007) Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 357:905–916PubMedCrossRef Canalis E, Giustina A, Bilezikian JP (2007) Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 357:905–916PubMedCrossRef
4.
Zurück zum Zitat Zhou G, Sebhat IK, Zhang BB (2009) AMPK activators: potential therapeutics for metabolic and other diseases. Acta Physiol (Oxf) 196:175–190CrossRef Zhou G, Sebhat IK, Zhang BB (2009) AMPK activators: potential therapeutics for metabolic and other diseases. Acta Physiol (Oxf) 196:175–190CrossRef
5.
Zurück zum Zitat Quinn JM, Tam S, Sims NA, Saleh H, McGregor NE, Poulton IJ, Scott JW, Gillespie MT, Kemp BE, van Denderen BJ (2010) Germline deletion of AMP-activated protein kinase beta subunits reduces bone mass without altering osteoclast differentiation or function. FASEB J 24:275–285PubMedCrossRef Quinn JM, Tam S, Sims NA, Saleh H, McGregor NE, Poulton IJ, Scott JW, Gillespie MT, Kemp BE, van Denderen BJ (2010) Germline deletion of AMP-activated protein kinase beta subunits reduces bone mass without altering osteoclast differentiation or function. FASEB J 24:275–285PubMedCrossRef
6.
Zurück zum Zitat Shah M, Kola B, Bataveljic A, Arnett TR, Viollet B, Saxon L, Korbonits M, Chenu C (2010) AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass. Bone 47:309–319PubMedCrossRef Shah M, Kola B, Bataveljic A, Arnett TR, Viollet B, Saxon L, Korbonits M, Chenu C (2010) AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass. Bone 47:309–319PubMedCrossRef
7.
Zurück zum Zitat Hou CH, Tan TW, Tang CH (2008) AMP-activated protein kinase is involved in COX-2 expression in response to ultrasound in cultured osteoblasts. Cell Signal 20:978–988PubMedCrossRef Hou CH, Tan TW, Tang CH (2008) AMP-activated protein kinase is involved in COX-2 expression in response to ultrasound in cultured osteoblasts. Cell Signal 20:978–988PubMedCrossRef
8.
Zurück zum Zitat Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2008) Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem Biophys Res Commun 375:414–419PubMedCrossRef Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2008) Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem Biophys Res Commun 375:414–419PubMedCrossRef
9.
Zurück zum Zitat Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2009) Activation of AMP kinase and inhibition of Rho kinase induce the mineralization of osteoblastic MC3T3-E1 cells through endothelial NOS and BMP-2 expression. Am J Physiol Endocrinol Metab 296:E139–E146PubMedCrossRef Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2009) Activation of AMP kinase and inhibition of Rho kinase induce the mineralization of osteoblastic MC3T3-E1 cells through endothelial NOS and BMP-2 expression. Am J Physiol Endocrinol Metab 296:E139–E146PubMedCrossRef
10.
Zurück zum Zitat Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Yamamoto M, Sugimoto T (2007) Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells. BMC Cell Biol 8:51PubMedCrossRef Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Yamamoto M, Sugimoto T (2007) Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells. BMC Cell Biol 8:51PubMedCrossRef
11.
Zurück zum Zitat Kasai T, Bandow K, Suzuki H, Chiba N, Kakimoto K, Ohnishi T, Kawamoto S, Nagaoka E, Matsuguchi T (2009) Osteoblast differentiation is functionally associated with decreased AMP kinase activity. J Cell Physiol 221:740–749PubMedCrossRef Kasai T, Bandow K, Suzuki H, Chiba N, Kakimoto K, Ohnishi T, Kawamoto S, Nagaoka E, Matsuguchi T (2009) Osteoblast differentiation is functionally associated with decreased AMP kinase activity. J Cell Physiol 221:740–749PubMedCrossRef
12.
Zurück zum Zitat Lee YS, Kim YS, Lee SY, Kim GH, Kim BJ, Lee SH, Lee KU, Kim GS, Kim SW, Koh JM (2010) AMP kinase acts as a negative regulator of RANKL in the differentiation of osteoclasts. Bone 47:926–937PubMedCrossRef Lee YS, Kim YS, Lee SY, Kim GH, Kim BJ, Lee SH, Lee KU, Kim GS, Kim SW, Koh JM (2010) AMP kinase acts as a negative regulator of RANKL in the differentiation of osteoclasts. Bone 47:926–937PubMedCrossRef
13.
Zurück zum Zitat Eriksen EF, Langdahl B, Vesterby A, Rungby J, Kassem M (1999) Hormone replacement therapy prevents osteoclastic hyperactivity: a histomorphometric study in early postmenopausal women. J Bone Miner Res 14:1217–1221PubMedCrossRef Eriksen EF, Langdahl B, Vesterby A, Rungby J, Kassem M (1999) Hormone replacement therapy prevents osteoclastic hyperactivity: a histomorphometric study in early postmenopausal women. J Bone Miner Res 14:1217–1221PubMedCrossRef
14.
Zurück zum Zitat Khastgir G, Studd J, Holland N, Alaghband-Zadeh J, Fox S, Chow J (2001) Anabolic effect of estrogen replacement on bone in postmenopausal women with osteoporosis: histomorphometric evidence in a longitudinal study. J Clin Endocrinol Metab 86:289–295PubMedCrossRef Khastgir G, Studd J, Holland N, Alaghband-Zadeh J, Fox S, Chow J (2001) Anabolic effect of estrogen replacement on bone in postmenopausal women with osteoporosis: histomorphometric evidence in a longitudinal study. J Clin Endocrinol Metab 86:289–295PubMedCrossRef
15.
Zurück zum Zitat Musi N, Hirshman MF, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O, Zhou G, Williamson JM, Ljunqvist O, Efendic S, Moller DE, Thorell A, Goodyear LJ (2002) Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 51:2074–2081PubMedCrossRef Musi N, Hirshman MF, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O, Zhou G, Williamson JM, Ljunqvist O, Efendic S, Moller DE, Thorell A, Goodyear LJ (2002) Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 51:2074–2081PubMedCrossRef
16.
Zurück zum Zitat Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174PubMed Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174PubMed
17.
Zurück zum Zitat Yin J, Xing H, Ye J (2008) Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism 57:712–717PubMedCrossRef Yin J, Xing H, Ye J (2008) Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism 57:712–717PubMedCrossRef
18.
Zurück zum Zitat Kim MS, Park JY, Namkoong C, Jang PG, Ryu JW, Song HS, Yun JY, Namgoong IS, Ha J, Park IS, Lee IK, Viollet B, Youn JH, Lee HK, Lee KU (2004) Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat Med 10:727–733PubMedCrossRef Kim MS, Park JY, Namkoong C, Jang PG, Ryu JW, Song HS, Yun JY, Namgoong IS, Ha J, Park IS, Lee IK, Viollet B, Youn JH, Lee HK, Lee KU (2004) Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat Med 10:727–733PubMedCrossRef
19.
Zurück zum Zitat Hou X, Xu S, Maitland-Toolan KA, Sato K, Jiang B, Ido Y, Lan F, Walsh K, Wierzbicki M, Verbeuren TJ, Cohen RA, Zang M (2008) SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 283:20015–20026PubMedCrossRef Hou X, Xu S, Maitland-Toolan KA, Sato K, Jiang B, Ido Y, Lan F, Walsh K, Wierzbicki M, Verbeuren TJ, Cohen RA, Zang M (2008) SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 283:20015–20026PubMedCrossRef
20.
Zurück zum Zitat Collins QF, Liu HY, Pi J, Liu Z, Quon MJ, Cao W (2007) Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5′-AMP-activated protein kinase. J Biol Chem 282:30143–30149PubMedCrossRef Collins QF, Liu HY, Pi J, Liu Z, Quon MJ, Cao W (2007) Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5′-AMP-activated protein kinase. J Biol Chem 282:30143–30149PubMedCrossRef
21.
Zurück zum Zitat Mai Q, Zhang Z, Xu S, Lu M, Zhou R, Zhao L, Jia C, Wen Z, Jin D, Bai X (2011) Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats. J Cell Biochem 112:2902–2909PubMedCrossRef Mai Q, Zhang Z, Xu S, Lu M, Zhou R, Zhao L, Jia C, Wen Z, Jin D, Bai X (2011) Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats. J Cell Biochem 112:2902–2909PubMedCrossRef
22.
Zurück zum Zitat Qin L, Han T, Zhang Q, Cao D, Nian H, Rahman K, Zheng H (2008) Antiosteoporotic chemical constituents from Er-Xian decoction, a traditional Chinese herbal formula. J Ethnopharmacol 118:271–279PubMedCrossRef Qin L, Han T, Zhang Q, Cao D, Nian H, Rahman K, Zheng H (2008) Antiosteoporotic chemical constituents from Er-Xian decoction, a traditional Chinese herbal formula. J Ethnopharmacol 118:271–279PubMedCrossRef
23.
Zurück zum Zitat Liu ZP, Li WX, Yu B, Huang J, Sun J, Huo JS, Liu CX (2005) Effects of trans-resveratrol from Polygonum cuspidatum on bone loss using the ovariectomized rat model. J Med Food 8:14–19PubMedCrossRef Liu ZP, Li WX, Yu B, Huang J, Sun J, Huo JS, Liu CX (2005) Effects of trans-resveratrol from Polygonum cuspidatum on bone loss using the ovariectomized rat model. J Med Food 8:14–19PubMedCrossRef
24.
Zurück zum Zitat Lee SH, Kim MJ, Kim BJ, Kim SR, Chun S, Ryu JS, Kim GS, Lee MC, Koh JM, Chung SJ (2010) Homocysteine-lowering therapy or antioxidant therapy for bone loss in Parkinson’s disease. Mov Disord 25:332–340PubMedCrossRef Lee SH, Kim MJ, Kim BJ, Kim SR, Chun S, Ryu JS, Kim GS, Lee MC, Koh JM, Chung SJ (2010) Homocysteine-lowering therapy or antioxidant therapy for bone loss in Parkinson’s disease. Mov Disord 25:332–340PubMedCrossRef
25.
Zurück zum Zitat Mereles D, Hunstein W (2011) Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises? Int J Mol Sci 12:5592–5603PubMedCrossRef Mereles D, Hunstein W (2011) Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises? Int J Mol Sci 12:5592–5603PubMedCrossRef
26.
Zurück zum Zitat Cadarette SM, Burden AM (2010) Measuring and improving adherence to osteoporosis pharmacotherapy. Curr Opin Rheumatol 22:397–403PubMedCrossRef Cadarette SM, Burden AM (2010) Measuring and improving adherence to osteoporosis pharmacotherapy. Curr Opin Rheumatol 22:397–403PubMedCrossRef
27.
Zurück zum Zitat Stearns ME, Amatangelo MD, Varma D, Sell C, Goodyear SM (2010) Combination therapy with epigallocatechin-3-gallate and doxorubicin in human prostate tumor modeling studies: inhibition of metastatic tumor growth in severe combined immunodeficiency mice. Am J Pathol 177:3169–3179PubMedCrossRef Stearns ME, Amatangelo MD, Varma D, Sell C, Goodyear SM (2010) Combination therapy with epigallocatechin-3-gallate and doxorubicin in human prostate tumor modeling studies: inhibition of metastatic tumor growth in severe combined immunodeficiency mice. Am J Pathol 177:3169–3179PubMedCrossRef
28.
Zurück zum Zitat Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610PubMedCrossRef Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610PubMedCrossRef
29.
Zurück zum Zitat Lee JH, Jin H, Shim HE, Kim HN, Ha H, Lee ZH (2010) Epigallocatechin-3-gallate inhibits osteoclastogenesis by down-regulating c-Fos expression and suppressing the nuclear factor-kappaB signal. Mol Pharmacol 77:17–25PubMedCrossRef Lee JH, Jin H, Shim HE, Kim HN, Ha H, Lee ZH (2010) Epigallocatechin-3-gallate inhibits osteoclastogenesis by down-regulating c-Fos expression and suppressing the nuclear factor-kappaB signal. Mol Pharmacol 77:17–25PubMedCrossRef
30.
Zurück zum Zitat Kim JE, Ahn MW, Baek SH, Lee IK, Kim YW, Kim JY, Dan JM, Park SY (2008) AMPK activator, AICAR, inhibits palmitate-induced apoptosis in osteoblast. Bone 43:394–404PubMedCrossRef Kim JE, Ahn MW, Baek SH, Lee IK, Kim YW, Kim JY, Dan JM, Park SY (2008) AMPK activator, AICAR, inhibits palmitate-induced apoptosis in osteoblast. Bone 43:394–404PubMedCrossRef
31.
Zurück zum Zitat Martin T, Gooi JH, Sims NA (2009) Molecular mechanisms in coupling of bone formation to resorption. Crit Rev Eukaryot Gene Expr 19:73–88PubMed Martin T, Gooi JH, Sims NA (2009) Molecular mechanisms in coupling of bone formation to resorption. Crit Rev Eukaryot Gene Expr 19:73–88PubMed
32.
Zurück zum Zitat Matsuo K, Irie N (2008) Osteoclast: osteoblast communication. Arch Biochem Biophys 473:201–209PubMedCrossRef Matsuo K, Irie N (2008) Osteoclast: osteoblast communication. Arch Biochem Biophys 473:201–209PubMedCrossRef
33.
Zurück zum Zitat Kao YH, Hiipakka RA, Liao S (2000) Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology 141:980–987PubMedCrossRef Kao YH, Hiipakka RA, Liao S (2000) Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology 141:980–987PubMedCrossRef
34.
Zurück zum Zitat Nelson-Dooley C, Della-Fera MA, Hamrick M, Baile CA (2005) Novel treatments for obesity and osteoporosis: targeting apoptotic pathways in adipocytes. Curr Med Chem 12:2215–2225PubMedCrossRef Nelson-Dooley C, Della-Fera MA, Hamrick M, Baile CA (2005) Novel treatments for obesity and osteoporosis: targeting apoptotic pathways in adipocytes. Curr Med Chem 12:2215–2225PubMedCrossRef
35.
Zurück zum Zitat Wolfram S, Wang Y, Thielecke F (2006) Anti-obesity effects of green tea: from bedside to bench. Mol Nutr Food Res 50:176–187PubMedCrossRef Wolfram S, Wang Y, Thielecke F (2006) Anti-obesity effects of green tea: from bedside to bench. Mol Nutr Food Res 50:176–187PubMedCrossRef
36.
Zurück zum Zitat Hamrick MW, Ferrari SL (2008) Leptin and the sympathetic connection of fat to bone. Osteoporos Int 19:905–912PubMedCrossRef Hamrick MW, Ferrari SL (2008) Leptin and the sympathetic connection of fat to bone. Osteoporos Int 19:905–912PubMedCrossRef
37.
Zurück zum Zitat Carr MC (2003) The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab 88:2404–2411PubMedCrossRef Carr MC (2003) The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab 88:2404–2411PubMedCrossRef
38.
Zurück zum Zitat Hill AM, Coates AM, Buckley JD, Ross R, Thielecke F, Howe PR (2007) Can EGCG reduce abdominal fat in obese subjects? J Am Coll Nutr 26:396S–402SPubMed Hill AM, Coates AM, Buckley JD, Ross R, Thielecke F, Howe PR (2007) Can EGCG reduce abdominal fat in obese subjects? J Am Coll Nutr 26:396S–402SPubMed
39.
Zurück zum Zitat Shen CL, Yeh JK, Stoecker BJ, Chyu MC, Wang JS (2009) Green tea polyphenols mitigate deterioration of bone microarchitecture in middle-aged female rats. Bone 44:684–690PubMedCrossRef Shen CL, Yeh JK, Stoecker BJ, Chyu MC, Wang JS (2009) Green tea polyphenols mitigate deterioration of bone microarchitecture in middle-aged female rats. Bone 44:684–690PubMedCrossRef
40.
Zurück zum Zitat Shen CL, Yeh JK, Cao JJ, Tatum OL, Dagda RY, Wang JS (2011) Green tea polyphenols mitigate bone loss of female rats in a chronic inflammation-induced bone loss model. J Nutr Biochem 21:968–974CrossRef Shen CL, Yeh JK, Cao JJ, Tatum OL, Dagda RY, Wang JS (2011) Green tea polyphenols mitigate bone loss of female rats in a chronic inflammation-induced bone loss model. J Nutr Biochem 21:968–974CrossRef
41.
Zurück zum Zitat Kim S, Lee MJ, Hong J, Li C, Smith TJ, Yang GY, Seril DN, Yang CS (2000) Plasma and tissue levels of tea catechins in rats and mice during chronic consumption of green tea polyphenols. Nutr Cancer 37:41–48PubMedCrossRef Kim S, Lee MJ, Hong J, Li C, Smith TJ, Yang GY, Seril DN, Yang CS (2000) Plasma and tissue levels of tea catechins in rats and mice during chronic consumption of green tea polyphenols. Nutr Cancer 37:41–48PubMedCrossRef
42.
Zurück zum Zitat Peairs A, Dai R, Gan L, Shimp S, Rylander MN, Li L, Reilly CM (2010) Epigallocatechin-3-gallate (EGCG) attenuates inflammation in MRL/lpr mouse mesangial cells. Cell Mol Immunol 7:123–132PubMed Peairs A, Dai R, Gan L, Shimp S, Rylander MN, Li L, Reilly CM (2010) Epigallocatechin-3-gallate (EGCG) attenuates inflammation in MRL/lpr mouse mesangial cells. Cell Mol Immunol 7:123–132PubMed
Metadaten
Titel
(–)-Epigallocathechin-3-Gallate, an AMPK Activator, Decreases Ovariectomy-Induced Bone Loss by Suppression of Bone Resorption
verfasst von
Seung Hun Lee
Beom-Jun Kim
Hyung Jin Choi
Sun Wook Cho
Chan Soo Shin
Sook-Young Park
Young-Sun Lee
Sun-Young Lee
Hong-Hee Kim
Ghi Su Kim
Jung-Min Koh
Publikationsdatum
01.05.2012
Verlag
Springer-Verlag
Erschienen in
Calcified Tissue International / Ausgabe 5/2012
Print ISSN: 0171-967X
Elektronische ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-012-9584-7

Weitere Artikel der Ausgabe 5/2012

Calcified Tissue International 5/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.