Skip to main content
Erschienen in: Calcified Tissue International 3/2015

01.03.2015 | Review

The Molecular Basis for Load-Induced Skeletal Muscle Hypertrophy

verfasst von: George R. Marcotte, Daniel W. D. West, Keith Baar

Erschienen in: Calcified Tissue International | Ausgabe 3/2015

Einloggen, um Zugang zu erhalten

Abstract

In a mature (weight neutral) animal, an increase in muscle mass only occurs when the muscle is loaded sufficiently to cause an increase in myofibrillar protein balance. A tight relationship between muscle hypertrophy, acute increases in protein balance, and the activity of the mechanistic target of rapamycin complex 1 (mTORC1) was demonstrated 15 years ago. Since then, our understanding of the signals that regulate load-induced hypertrophy has evolved considerably. For example, we now know that mechanical load activates mTORC1 in the same way as growth factors, by moving TSC2 (a primary inhibitor of mTORC1) away from its target (the mTORC activator) Rheb. However, the kinase that phosphorylates and moves TSC2 is different in the two processes. Similarly, we have learned that a distinct pathway exists whereby amino acids activate mTORC1 by moving it to Rheb. While mTORC1 remains at the forefront of load-induced hypertrophy, the importance of other pathways that regulate muscle mass are becoming clearer. Myostatin, is best known for its control of developmental muscle size. However, new mechanisms to explain how loading regulates this process are suggesting that it could play an important role in hypertrophic muscle growth as well. Last, new mechanisms are highlighted for how β2 receptor agonists could be involved in load-induced muscle growth and why these agents are being developed as non-exercise-based therapies for muscle atrophy. Overall, the results highlight how studying the mechanism of load-induced skeletal muscle mass is leading the development of pharmaceutical interventions to promote muscle growth in those unwilling or unable to perform resistance exercise.
Literatur
1.
Zurück zum Zitat Rennie MJ, Wackerhage H, Spangenburg EE, Booth FW (2004) Control of the size of the human muscle mass. Annu Rev Physiol 66:799–828PubMedCrossRef Rennie MJ, Wackerhage H, Spangenburg EE, Booth FW (2004) Control of the size of the human muscle mass. Annu Rev Physiol 66:799–828PubMedCrossRef
2.
Zurück zum Zitat Phillips S, Baar K, Lewis N (2011) Nutrition for Weight and resistance training. In: Lanham-New S, Stear S, Shirreffs S, Collins A (eds) Nutrition Society Textbook on Sport and Exercise Nutrition. Wiley-Blackwell, Ames, pp 120–133CrossRef Phillips S, Baar K, Lewis N (2011) Nutrition for Weight and resistance training. In: Lanham-New S, Stear S, Shirreffs S, Collins A (eds) Nutrition Society Textbook on Sport and Exercise Nutrition. Wiley-Blackwell, Ames, pp 120–133CrossRef
3.
Zurück zum Zitat Greenhaff PL, Karagounis LG, Peirce N, Simpson EJ, Hazell M, Layfield R, Wackerhage H, Smith K, Atherton P, Selby A, Rennie MJ (2008) Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am J Physiol Endocrinol Metab 295:E595–E604PubMedCentralPubMedCrossRef Greenhaff PL, Karagounis LG, Peirce N, Simpson EJ, Hazell M, Layfield R, Wackerhage H, Smith K, Atherton P, Selby A, Rennie MJ (2008) Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am J Physiol Endocrinol Metab 295:E595–E604PubMedCentralPubMedCrossRef
4.
Zurück zum Zitat Ferrando AA, Sheffield-Moore M, Wolf SE, Herndon DN, Wolfe RR (2001) Testosterone administration in severe burns ameliorates muscle catabolism. Crit Care Med 29:1936–1942PubMedCrossRef Ferrando AA, Sheffield-Moore M, Wolf SE, Herndon DN, Wolfe RR (2001) Testosterone administration in severe burns ameliorates muscle catabolism. Crit Care Med 29:1936–1942PubMedCrossRef
5.
Zurück zum Zitat Tuvdendorj D, Chinkes DL, Zhang XJ, Suman OE, Aarsland A, Ferrando A, Kulp GA, Jeschke MG, Wolfe RR, Herndon DN (2011) Long-term oxandrolone treatment increases muscle protein net deposition via improving amino acid utilization in pediatric patients 6 months after burn injury. Surgery 149:645–653PubMedCentralPubMedCrossRef Tuvdendorj D, Chinkes DL, Zhang XJ, Suman OE, Aarsland A, Ferrando A, Kulp GA, Jeschke MG, Wolfe RR, Herndon DN (2011) Long-term oxandrolone treatment increases muscle protein net deposition via improving amino acid utilization in pediatric patients 6 months after burn injury. Surgery 149:645–653PubMedCentralPubMedCrossRef
6.
Zurück zum Zitat Baehr LM, Tunzi M, Bodine SC (2014) Muscle hypertrophy is associated with increases in proteasome activity that is independent of MuRF1 and MAFbx expression. Front Physiol 5:69PubMedCentralPubMedCrossRef Baehr LM, Tunzi M, Bodine SC (2014) Muscle hypertrophy is associated with increases in proteasome activity that is independent of MuRF1 and MAFbx expression. Front Physiol 5:69PubMedCentralPubMedCrossRef
7.
Zurück zum Zitat Hwee DT, Baehr LM, Philp A, Baar K, Bodine SC (2014) Maintenance of muscle mass and load-induced growth in Muscle RING Finger 1 null mice with age. Aging Cell 13:92–101PubMedCentralPubMedCrossRef Hwee DT, Baehr LM, Philp A, Baar K, Bodine SC (2014) Maintenance of muscle mass and load-induced growth in Muscle RING Finger 1 null mice with age. Aging Cell 13:92–101PubMedCentralPubMedCrossRef
9.
Zurück zum Zitat Goodman CA, Frey JW, Mabrey DM, Jacobs BL, Lincoln HC, You JS, Hornberger TA (2011) The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth. The Journal of physiology 589:5485–5501PubMedCentralPubMedCrossRef Goodman CA, Frey JW, Mabrey DM, Jacobs BL, Lincoln HC, You JS, Hornberger TA (2011) The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth. The Journal of physiology 589:5485–5501PubMedCentralPubMedCrossRef
10.
Zurück zum Zitat Skerry TM (2008) The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch Biochem Biophys 473:117–123PubMedCrossRef Skerry TM (2008) The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch Biochem Biophys 473:117–123PubMedCrossRef
11.
Zurück zum Zitat Kjaer M, Langberg H, Heinemeier K, Bayer ML, Hansen M, Holm L, Doessing S, Kongsgaard M, Krogsgaard MR, Magnusson SP (2009) From mechanical loading to collagen synthesis, structural changes and function in human tendon. Scand J Med Sci Sports 19:500–510PubMedCrossRef Kjaer M, Langberg H, Heinemeier K, Bayer ML, Hansen M, Holm L, Doessing S, Kongsgaard M, Krogsgaard MR, Magnusson SP (2009) From mechanical loading to collagen synthesis, structural changes and function in human tendon. Scand J Med Sci Sports 19:500–510PubMedCrossRef
12.
Zurück zum Zitat Mackey AL, Brandstetter S, Schjerling P, Bojsen-Moller J, Qvortrup K, Pedersen MM, Doessing S, Kjaer M, Magnusson SP, Langberg H (2011) Sequenced response of extracellular matrix deadhesion and fibrotic regulators after muscle damage is involved in protection against future injury in human skeletal muscle. FASEB J 25:1943–1959PubMedCentralPubMedCrossRef Mackey AL, Brandstetter S, Schjerling P, Bojsen-Moller J, Qvortrup K, Pedersen MM, Doessing S, Kjaer M, Magnusson SP, Langberg H (2011) Sequenced response of extracellular matrix deadhesion and fibrotic regulators after muscle damage is involved in protection against future injury in human skeletal muscle. FASEB J 25:1943–1959PubMedCentralPubMedCrossRef
13.
Zurück zum Zitat Wycherley TP, Moran LJ, Clifton PM, Noakes M, Brinkworth GD (2012) Effects of energy-restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta-analysis of randomized controlled trials. Am J Clin Nutr 96:1281–1298PubMedCrossRef Wycherley TP, Moran LJ, Clifton PM, Noakes M, Brinkworth GD (2012) Effects of energy-restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta-analysis of randomized controlled trials. Am J Clin Nutr 96:1281–1298PubMedCrossRef
14.
Zurück zum Zitat Breen L, Phillips SM (2013) Interactions between exercise and nutrition to prevent muscle waste during ageing. Br J Clin Pharmacol 75:708–715PubMedCentralPubMed Breen L, Phillips SM (2013) Interactions between exercise and nutrition to prevent muscle waste during ageing. Br J Clin Pharmacol 75:708–715PubMedCentralPubMed
15.
Zurück zum Zitat de Boer MD, Maganaris CN, Seynnes OR, Rennie MJ, Narici MV (2007) Time course of muscular, neural and tendinous adaptations to 23 day unilateral lower-limb suspension in young men. J Physiol 583:1079–1091PubMedCentralPubMedCrossRef de Boer MD, Maganaris CN, Seynnes OR, Rennie MJ, Narici MV (2007) Time course of muscular, neural and tendinous adaptations to 23 day unilateral lower-limb suspension in young men. J Physiol 583:1079–1091PubMedCentralPubMedCrossRef
16.
Zurück zum Zitat Paddon-Jones D, Sheffield-Moore M, Cree MG, Hewlings SJ, Aarsland A, Wolfe RR, Ferrando AA (2006) Atrophy and impaired muscle protein synthesis during prolonged inactivity and stress. J Clin Endocrinol Metab 91:4836–4841PubMedCrossRef Paddon-Jones D, Sheffield-Moore M, Cree MG, Hewlings SJ, Aarsland A, Wolfe RR, Ferrando AA (2006) Atrophy and impaired muscle protein synthesis during prolonged inactivity and stress. J Clin Endocrinol Metab 91:4836–4841PubMedCrossRef
17.
18.
Zurück zum Zitat Jackman RW, Cornwell EW, Wu CL, Kandarian SC (2013) Nuclear factor-kappaB signalling and transcriptional regulation in skeletal muscle atrophy. Exp Physiol 98:19–24PubMedCentralPubMedCrossRef Jackman RW, Cornwell EW, Wu CL, Kandarian SC (2013) Nuclear factor-kappaB signalling and transcriptional regulation in skeletal muscle atrophy. Exp Physiol 98:19–24PubMedCentralPubMedCrossRef
19.
Zurück zum Zitat Blair SN (2009) Physical inactivity: the biggest public health problem of the 21st century. Br J Sports Med 43:1–2PubMed Blair SN (2009) Physical inactivity: the biggest public health problem of the 21st century. Br J Sports Med 43:1–2PubMed
20.
Zurück zum Zitat Ruiz JR, Sui X, Lobelo F, Morrow JR Jr, Jackson AW, Sjostrom M, Blair SN (2008) Association between muscular strength and mortality in men: prospective cohort study. Br Med J 337:a439CrossRef Ruiz JR, Sui X, Lobelo F, Morrow JR Jr, Jackson AW, Sjostrom M, Blair SN (2008) Association between muscular strength and mortality in men: prospective cohort study. Br Med J 337:a439CrossRef
21.
Zurück zum Zitat Wolfe RR (2006) The underappreciated role of muscle in health and disease. Am J Clin Nutr 84:475–482PubMed Wolfe RR (2006) The underappreciated role of muscle in health and disease. Am J Clin Nutr 84:475–482PubMed
22.
Zurück zum Zitat Hurley BF, Hanson ED, Sheaff AK (2011) Strength training as a countermeasure to aging muscle and chronic disease. Sports Med 41:289–306PubMedCrossRef Hurley BF, Hanson ED, Sheaff AK (2011) Strength training as a countermeasure to aging muscle and chronic disease. Sports Med 41:289–306PubMedCrossRef
23.
Zurück zum Zitat Villareal DT, Smith GI, Sinacore DR, Shah K, Mittendorfer B (2011) Regular multicomponent exercise increases physical fitness and muscle protein anabolism in frail, obese, older adults. Obesity 19:312–318PubMedCentralPubMedCrossRef Villareal DT, Smith GI, Sinacore DR, Shah K, Mittendorfer B (2011) Regular multicomponent exercise increases physical fitness and muscle protein anabolism in frail, obese, older adults. Obesity 19:312–318PubMedCentralPubMedCrossRef
24.
Zurück zum Zitat Wong TS, Booth FW (1990) Protein metabolism in rat tibialis anterior muscle after stimulated chronic eccentric exercise. J Appl Physiol 69:1718–1724PubMed Wong TS, Booth FW (1990) Protein metabolism in rat tibialis anterior muscle after stimulated chronic eccentric exercise. J Appl Physiol 69:1718–1724PubMed
25.
Zurück zum Zitat Wong TS, Booth FW (1990) Protein metabolism in rat gastrocnemius muscle after stimulated chronic concentric exercise. J Appl Physiol 69:1709–1717PubMed Wong TS, Booth FW (1990) Protein metabolism in rat gastrocnemius muscle after stimulated chronic concentric exercise. J Appl Physiol 69:1709–1717PubMed
26.
Zurück zum Zitat Wong TS, Booth FW (1988) Skeletal muscle enlargement with weight-lifting exercise by rats. J Appl Physiol 65:950–954PubMed Wong TS, Booth FW (1988) Skeletal muscle enlargement with weight-lifting exercise by rats. J Appl Physiol 65:950–954PubMed
27.
Zurück zum Zitat Burd NA, West DW, Staples AW, Atherton PJ, Baker JM, Moore DR, Holwerda AM, Parise G, Rennie MJ, Baker SK, Phillips SM (2010) Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS ONE 5:e12033PubMedCentralPubMedCrossRef Burd NA, West DW, Staples AW, Atherton PJ, Baker JM, Moore DR, Holwerda AM, Parise G, Rennie MJ, Baker SK, Phillips SM (2010) Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS ONE 5:e12033PubMedCentralPubMedCrossRef
28.
Zurück zum Zitat Mitchell CJ, Churchward-Venne TA, West DW, Burd NA, Breen L, Baker SK, Phillips SM (2012) Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol 113:71–77PubMedCentralPubMedCrossRef Mitchell CJ, Churchward-Venne TA, West DW, Burd NA, Breen L, Baker SK, Phillips SM (2012) Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol 113:71–77PubMedCentralPubMedCrossRef
29.
Zurück zum Zitat Abe T, Kearns CF, Sato Y (2006) Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol 100:1460–1466PubMedCrossRef Abe T, Kearns CF, Sato Y (2006) Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol 100:1460–1466PubMedCrossRef
30.
Zurück zum Zitat Fujita S, Abe T, Drummond MJ, Cadenas JG, Dreyer HC, Sato Y, Volpi E, Rasmussen BB (2007) Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol 103:903–910PubMedCrossRef Fujita S, Abe T, Drummond MJ, Cadenas JG, Dreyer HC, Sato Y, Volpi E, Rasmussen BB (2007) Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol 103:903–910PubMedCrossRef
31.
Zurück zum Zitat Papanicolaou GN, Falk EA (1938) General muscular hypertrophy induced by androgenic hormone. Science 87:238–239PubMedCrossRef Papanicolaou GN, Falk EA (1938) General muscular hypertrophy induced by androgenic hormone. Science 87:238–239PubMedCrossRef
33.
Zurück zum Zitat Hoberman JM, Yesalis CE (1995) The history of synthetic testosterone. Scientific American, pp 77–81 Hoberman JM, Yesalis CE (1995) The history of synthetic testosterone. Scientific American, pp 77–81
34.
Zurück zum Zitat Samuels LT, Henschel AF, Keys A (1942) Influence of methyl testosterone on muscular work and creatine metabolism in normal young Men. J Clin Endocrinol Metab 2:649–654CrossRef Samuels LT, Henschel AF, Keys A (1942) Influence of methyl testosterone on muscular work and creatine metabolism in normal young Men. J Clin Endocrinol Metab 2:649–654CrossRef
35.
Zurück zum Zitat Cureton KJ, Collins MA, Hill DW, McElhannon FM Jr (1988) Muscle hypertrophy in men and women. Med Sci Sports Exerc 20:338–344PubMedCrossRef Cureton KJ, Collins MA, Hill DW, McElhannon FM Jr (1988) Muscle hypertrophy in men and women. Med Sci Sports Exerc 20:338–344PubMedCrossRef
36.
Zurück zum Zitat Hanson ED, Sheaff AK, Sood S, Ma L, Francis JD, Goldberg AP, Hurley BF (2013) Strength training induces muscle hypertrophy and functional gains in black prostate cancer patients despite androgen deprivation therapy. J Gerontol A 68:490–498CrossRef Hanson ED, Sheaff AK, Sood S, Ma L, Francis JD, Goldberg AP, Hurley BF (2013) Strength training induces muscle hypertrophy and functional gains in black prostate cancer patients despite androgen deprivation therapy. J Gerontol A 68:490–498CrossRef
37.
Zurück zum Zitat West DW, Burd NA, Tang JE, Moore DR, Staples AW, Holwerda AM, Baker SK, Phillips SM (2010) Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training-induced muscle hypertrophy nor strength of the elbow flexors. J Appl Physiol 108:60–67PubMedCentralPubMedCrossRef West DW, Burd NA, Tang JE, Moore DR, Staples AW, Holwerda AM, Baker SK, Phillips SM (2010) Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training-induced muscle hypertrophy nor strength of the elbow flexors. J Appl Physiol 108:60–67PubMedCentralPubMedCrossRef
38.
Zurück zum Zitat West DW, Kujbida GW, Moore DR, Atherton P, Burd NA, Padzik JP, De Lisio M, Tang JE, Parise G, Rennie MJ, Baker SK, Phillips SM (2009) Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. J Physiol 587:5239–5247PubMedCentralPubMedCrossRef West DW, Kujbida GW, Moore DR, Atherton P, Burd NA, Padzik JP, De Lisio M, Tang JE, Parise G, Rennie MJ, Baker SK, Phillips SM (2009) Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. J Physiol 587:5239–5247PubMedCentralPubMedCrossRef
39.
Zurück zum Zitat Ahtiainen JP, Pakarinen A, Kraemer WJ, Hakkinen K (2003) Acute hormonal and neuromuscular responses and recovery to forced vs maximum repetitions multiple resistance exercises. Int J Sports Med 24:410–418PubMedCrossRef Ahtiainen JP, Pakarinen A, Kraemer WJ, Hakkinen K (2003) Acute hormonal and neuromuscular responses and recovery to forced vs maximum repetitions multiple resistance exercises. Int J Sports Med 24:410–418PubMedCrossRef
40.
Zurück zum Zitat Adams GR, Haddad F (1996) The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy. J Appl Physiol 81:2509–2516PubMed Adams GR, Haddad F (1996) The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy. J Appl Physiol 81:2509–2516PubMed
41.
Zurück zum Zitat McKoy G, Ashley W, Mander J, Yang SY, Williams N, Russell B, Goldspink G (1999) Expression of insulin growth factor-1 splice variants and structural genes in rabbit skeletal muscle induced by stretch and stimulation. J Physiol 516(Pt 2):583–592PubMedCentralPubMedCrossRef McKoy G, Ashley W, Mander J, Yang SY, Williams N, Russell B, Goldspink G (1999) Expression of insulin growth factor-1 splice variants and structural genes in rabbit skeletal muscle induced by stretch and stimulation. J Physiol 516(Pt 2):583–592PubMedCentralPubMedCrossRef
42.
Zurück zum Zitat Spangenburg EE, Le Roith D, Ward CW, Bodine SC (2008) A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy. J Physiol 586:283–291PubMedCentralPubMedCrossRef Spangenburg EE, Le Roith D, Ward CW, Bodine SC (2008) A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy. J Physiol 586:283–291PubMedCentralPubMedCrossRef
43.
Zurück zum Zitat Cuneo RC, Salomon F, Wiles CM, Hesp R, Sonksen PH (1991) Growth hormone treatment in growth hormone-deficient adults. I. Effects on muscle mass and strength. J Appl Physiol 70:688–694PubMed Cuneo RC, Salomon F, Wiles CM, Hesp R, Sonksen PH (1991) Growth hormone treatment in growth hormone-deficient adults. I. Effects on muscle mass and strength. J Appl Physiol 70:688–694PubMed
44.
Zurück zum Zitat Cuneo RC, Salomon F, Wiles CM, Sonksen PH (1990) Skeletal muscle performance in adults with growth hormone deficiency. Horm Res 33(Suppl 4):55–60PubMedCrossRef Cuneo RC, Salomon F, Wiles CM, Sonksen PH (1990) Skeletal muscle performance in adults with growth hormone deficiency. Horm Res 33(Suppl 4):55–60PubMedCrossRef
45.
Zurück zum Zitat Hornberger TA, Stuppard R, Conley KE, Fedele MJ, Fiorotto ML, Chin ER, Esser KA (2004) Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. Biochem J 380:795–804PubMedCentralPubMedCrossRef Hornberger TA, Stuppard R, Conley KE, Fedele MJ, Fiorotto ML, Chin ER, Esser KA (2004) Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. Biochem J 380:795–804PubMedCentralPubMedCrossRef
46.
Zurück zum Zitat Goldberg AL (1967) Work-induced growth of skeletal muscle in normal and hypophysectomized rats. Am J Physiol 213:1193–1198PubMed Goldberg AL (1967) Work-induced growth of skeletal muscle in normal and hypophysectomized rats. Am J Physiol 213:1193–1198PubMed
47.
Zurück zum Zitat Goldberg AL (1968) Role of insulin in work-induced growth of skeletal muscle. Endocrinology 83:1071–1073PubMedCrossRef Goldberg AL (1968) Role of insulin in work-induced growth of skeletal muscle. Endocrinology 83:1071–1073PubMedCrossRef
48.
Zurück zum Zitat Goldberg AL (1969) Protein turnover in skeletal muscle. I. Protein catabolism during work-induced hypertrophy and growth induced with growth hormone. J Biol Chem 244:3217–3222PubMed Goldberg AL (1969) Protein turnover in skeletal muscle. I. Protein catabolism during work-induced hypertrophy and growth induced with growth hormone. J Biol Chem 244:3217–3222PubMed
49.
50.
Zurück zum Zitat Bullough WS (1962) The control of mitotic activity in adult mammalian tissues. Biol Rev Camb Philos Soc 37:307–342PubMedCrossRef Bullough WS (1962) The control of mitotic activity in adult mammalian tissues. Biol Rev Camb Philos Soc 37:307–342PubMedCrossRef
51.
Zurück zum Zitat Elgjo K, Reichelt KL (2004) Chalones: from aqueous extracts to oligopeptides. Cell Cycle 3:1208–1211PubMedCrossRef Elgjo K, Reichelt KL (2004) Chalones: from aqueous extracts to oligopeptides. Cell Cycle 3:1208–1211PubMedCrossRef
52.
53.
54.
Zurück zum Zitat Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG, Ostrander EA (2007) A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet 3:e79PubMedCentralPubMedCrossRef Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG, Ostrander EA (2007) A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet 3:e79PubMedCentralPubMedCrossRef
56.
Zurück zum Zitat Heinemeier KM, Olesen JL, Schjerling P, Haddad F, Langberg H, Baldwin KM, Kjaer M (2007) Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon: differential effects of specific contraction types. J Appl Physiol 102:573–581PubMedCrossRef Heinemeier KM, Olesen JL, Schjerling P, Haddad F, Langberg H, Baldwin KM, Kjaer M (2007) Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon: differential effects of specific contraction types. J Appl Physiol 102:573–581PubMedCrossRef
57.
Zurück zum Zitat Kim JS, Petrella JK, Cross JM, Bamman MM (2007) Load-mediated downregulation of myostatin mRNA is not sufficient to promote myofiber hypertrophy in humans: a cluster analysis. J Appl Physiol 103:1488–1495PubMedCrossRef Kim JS, Petrella JK, Cross JM, Bamman MM (2007) Load-mediated downregulation of myostatin mRNA is not sufficient to promote myofiber hypertrophy in humans: a cluster analysis. J Appl Physiol 103:1488–1495PubMedCrossRef
58.
Zurück zum Zitat Kagawa Y (1978) Impact of Westernization on the nutrition of Japanese: changes in physique, cancer, longevity and centenarians. Prev Med 7:205–217PubMedCrossRef Kagawa Y (1978) Impact of Westernization on the nutrition of Japanese: changes in physique, cancer, longevity and centenarians. Prev Med 7:205–217PubMedCrossRef
60.
Zurück zum Zitat Almurshed K, Grunewald K (2000) The effects of dietary energy restriction on overloaded skeletal muscle in rats. Br J Nutr 84:697–704PubMed Almurshed K, Grunewald K (2000) The effects of dietary energy restriction on overloaded skeletal muscle in rats. Br J Nutr 84:697–704PubMed
61.
Zurück zum Zitat Almurshed KS, Grunewald KK (2000) Dietary protein does not affect overloaded skeletal muscle in rats. J Nutr 130:1743–1748PubMed Almurshed KS, Grunewald KK (2000) Dietary protein does not affect overloaded skeletal muscle in rats. J Nutr 130:1743–1748PubMed
62.
Zurück zum Zitat Tipton KD, Ferrando AA, Phillips SM, Doyle D Jr, Wolfe RR (1999) Postexercise net protein synthesis in human muscle from orally administered amino acids. Am J Physiol 276:E628–E634PubMed Tipton KD, Ferrando AA, Phillips SM, Doyle D Jr, Wolfe RR (1999) Postexercise net protein synthesis in human muscle from orally administered amino acids. Am J Physiol 276:E628–E634PubMed
63.
Zurück zum Zitat Hartman JW, Tang JE, Wilkinson SB, Tarnopolsky MA, Lawrence RL, Fullerton AV, Phillips SM (2007) Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. Am J Clin Nutr 86:373–381PubMed Hartman JW, Tang JE, Wilkinson SB, Tarnopolsky MA, Lawrence RL, Fullerton AV, Phillips SM (2007) Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. Am J Clin Nutr 86:373–381PubMed
64.
Zurück zum Zitat Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR (1995) Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol 268:E514–E520PubMed Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR (1995) Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol 268:E514–E520PubMed
65.
Zurück zum Zitat MacKenzie MG, Hamilton DL, Murray JT, Taylor PM, Baar K (2009) mVps34 is activated following high-resistance contractions. J Physiol 587:253–260PubMedCentralPubMedCrossRef MacKenzie MG, Hamilton DL, Murray JT, Taylor PM, Baar K (2009) mVps34 is activated following high-resistance contractions. J Physiol 587:253–260PubMedCentralPubMedCrossRef
66.
Zurück zum Zitat Burd NA, West DW, Moore DR, Atherton PJ, Staples AW, Prior T, Tang JE, Rennie MJ, Baker SK, Phillips SM (2011) Enhanced amino acid sensitivity of myofibrillar protein synthesis persists for up to 24 h after resistance exercise in young men. J Nutr 141:568–573PubMedCrossRef Burd NA, West DW, Moore DR, Atherton PJ, Staples AW, Prior T, Tang JE, Rennie MJ, Baker SK, Phillips SM (2011) Enhanced amino acid sensitivity of myofibrillar protein synthesis persists for up to 24 h after resistance exercise in young men. J Nutr 141:568–573PubMedCrossRef
67.
Zurück zum Zitat Moore DR, Robinson MJ, Fry JL, Tang JE, Glover EI, Wilkinson SB, Prior T, Tarnopolsky MA, Phillips SM (2009) Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr 89:161–168PubMedCrossRef Moore DR, Robinson MJ, Fry JL, Tang JE, Glover EI, Wilkinson SB, Prior T, Tarnopolsky MA, Phillips SM (2009) Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr 89:161–168PubMedCrossRef
68.
Zurück zum Zitat Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM (2009) Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol 107:987–992PubMedCrossRef Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM (2009) Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol 107:987–992PubMedCrossRef
69.
Zurück zum Zitat Areta JL, Burke LM, Ross ML, Camera DM, West DW, Broad EM, Jeacocke NA, Moore DR, Stellingwerff T, Phillips SM, Hawley JA, Coffey VG (2013) Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol 591:2319–2331PubMedCentralPubMedCrossRef Areta JL, Burke LM, Ross ML, Camera DM, West DW, Broad EM, Jeacocke NA, Moore DR, Stellingwerff T, Phillips SM, Hawley JA, Coffey VG (2013) Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol 591:2319–2331PubMedCentralPubMedCrossRef
70.
Zurück zum Zitat Fatouros I, Chatzinikolaou A, Paltoglou G, Petridou A, Avloniti A, Jamurtas A, Goussetis E, Mitrakou A, Mougios V, Lazaropoulou C, Margeli A, Papassotiriou I, Mastorakos G (2010) Acute resistance exercise results in catecholaminergic rather than hypothalamic–pituitary–adrenal axis stimulation during exercise in young men. Stress 13:461–468PubMed Fatouros I, Chatzinikolaou A, Paltoglou G, Petridou A, Avloniti A, Jamurtas A, Goussetis E, Mitrakou A, Mougios V, Lazaropoulou C, Margeli A, Papassotiriou I, Mastorakos G (2010) Acute resistance exercise results in catecholaminergic rather than hypothalamic–pituitary–adrenal axis stimulation during exercise in young men. Stress 13:461–468PubMed
71.
Zurück zum Zitat Kraemer WJ, Noble BJ, Clark MJ, Culver BW (1987) Physiologic responses to heavy-resistance exercise with very short rest periods. Int J Sports Med 8:247–252PubMedCrossRef Kraemer WJ, Noble BJ, Clark MJ, Culver BW (1987) Physiologic responses to heavy-resistance exercise with very short rest periods. Int J Sports Med 8:247–252PubMedCrossRef
72.
Zurück zum Zitat Roatta S, Farina D (2010) Sympathetic actions on the skeletal muscle. Exerc Sport Sci Rev 38:31–35PubMedCrossRef Roatta S, Farina D (2010) Sympathetic actions on the skeletal muscle. Exerc Sport Sci Rev 38:31–35PubMedCrossRef
73.
Zurück zum Zitat Ryall JG, Sillence MN, Lynch GS (2006) Systemic administration of beta2-adrenoceptor agonists, formoterol and salmeterol, elicit skeletal muscle hypertrophy in rats at micromolar doses. Br J Pharmacol 147:587–595PubMedCentralPubMedCrossRef Ryall JG, Sillence MN, Lynch GS (2006) Systemic administration of beta2-adrenoceptor agonists, formoterol and salmeterol, elicit skeletal muscle hypertrophy in rats at micromolar doses. Br J Pharmacol 147:587–595PubMedCentralPubMedCrossRef
74.
Zurück zum Zitat Bruno NE, Kelly KA, Hawkins R, Bramah-Lawani M, Amelio AL, Nwachukwu JC, Nettles KW, Conkright MD (2014) Creb coactivators direct anabolic responses and enhance performance of skeletal muscle. EMBO J 33:1027–1043PubMedCrossRef Bruno NE, Kelly KA, Hawkins R, Bramah-Lawani M, Amelio AL, Nwachukwu JC, Nettles KW, Conkright MD (2014) Creb coactivators direct anabolic responses and enhance performance of skeletal muscle. EMBO J 33:1027–1043PubMedCrossRef
75.
Zurück zum Zitat Goldberg AL, Etlinger JD, Goldspink DF, Jablecki C (1975) Mechanism of work-induced hypertrophy of skeletal muscle. Med Sci Sports 7:185–198PubMed Goldberg AL, Etlinger JD, Goldspink DF, Jablecki C (1975) Mechanism of work-induced hypertrophy of skeletal muscle. Med Sci Sports 7:185–198PubMed
76.
Zurück zum Zitat Baar K, Esser K (1999) Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol 276:C120–C127PubMed Baar K, Esser K (1999) Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol 276:C120–C127PubMed
78.
Zurück zum Zitat Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177–189PubMedCrossRef Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177–189PubMedCrossRef
79.
Zurück zum Zitat Dickinson JM, Fry CS, Drummond MJ, Gundermann DM, Walker DK, Glynn EL, Timmerman KL, Dhanani S, Volpi E, Rasmussen BB (2011) Mammalian target of rapamycin complex 1 activation is required for the stimulation of human skeletal muscle protein synthesis by essential amino acids. J Nutr 141:856–862PubMedCentralPubMedCrossRef Dickinson JM, Fry CS, Drummond MJ, Gundermann DM, Walker DK, Glynn EL, Timmerman KL, Dhanani S, Volpi E, Rasmussen BB (2011) Mammalian target of rapamycin complex 1 activation is required for the stimulation of human skeletal muscle protein synthesis by essential amino acids. J Nutr 141:856–862PubMedCentralPubMedCrossRef
80.
Zurück zum Zitat Drummond MJ, Fry CS, Glynn EL, Dreyer HC, Dhanani S, Timmerman KL, Volpi E, Rasmussen BB (2009) Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J Physiol 587:1535–1546PubMedCentralPubMedCrossRef Drummond MJ, Fry CS, Glynn EL, Dreyer HC, Dhanani S, Timmerman KL, Volpi E, Rasmussen BB (2009) Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J Physiol 587:1535–1546PubMedCentralPubMedCrossRef
81.
Zurück zum Zitat Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019PubMedCrossRef Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019PubMedCrossRef
82.
Zurück zum Zitat Goodman CA, Miu MH, Frey JW, Mabrey DM, Lincoln HC, Ge Y, Chen J, Hornberger TA (2010) A phosphatidylinositol 3-kinase/protein kinase B-independent activation of mammalian target of rapamycin signaling is sufficient to induce skeletal muscle hypertrophy. Mol Biol Cell 21:3258–3268PubMedCentralPubMedCrossRef Goodman CA, Miu MH, Frey JW, Mabrey DM, Lincoln HC, Ge Y, Chen J, Hornberger TA (2010) A phosphatidylinositol 3-kinase/protein kinase B-independent activation of mammalian target of rapamycin signaling is sufficient to induce skeletal muscle hypertrophy. Mol Biol Cell 21:3258–3268PubMedCentralPubMedCrossRef
83.
Zurück zum Zitat Terzis G, Georgiadis G, Stratakos G, Vogiatzis I, Kavouras S, Manta P, Mascher H, Blomstrand E (2008) Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects. Eur J Appl Physiol 102:145–152PubMedCrossRef Terzis G, Georgiadis G, Stratakos G, Vogiatzis I, Kavouras S, Manta P, Mascher H, Blomstrand E (2008) Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects. Eur J Appl Physiol 102:145–152PubMedCrossRef
84.
Zurück zum Zitat Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, Yang Q, Bennett C, Harada Y, Stankunas K, Wang CY, He X, MacDougald OA, You M, Williams BO, Guan KL (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126:955–968PubMedCrossRef Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, Yang Q, Bennett C, Harada Y, Stankunas K, Wang CY, He X, MacDougald OA, You M, Williams BO, Guan KL (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126:955–968PubMedCrossRef
85.
Zurück zum Zitat Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590PubMedCrossRef Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590PubMedCrossRef
86.
Zurück zum Zitat Crozier SJ, Kimball SR, Emmert SW, Anthony JC, Jefferson LS (2005) Oral leucine administration stimulates protein synthesis in rat skeletal muscle. J Nutr 135:376–382PubMed Crozier SJ, Kimball SR, Emmert SW, Anthony JC, Jefferson LS (2005) Oral leucine administration stimulates protein synthesis in rat skeletal muscle. J Nutr 135:376–382PubMed
87.
Zurück zum Zitat Jacobs BL, You JS, Frey JW, Goodman CA, Gundermann DM, Hornberger TA (2013) Eccentric contractions increase the phosphorylation of tuberous sclerosis complex-2 (TSC2) and alter the targeting of TSC2 and the mechanistic target of rapamycin to the lysosome. J Physiol 591:4611–4620PubMedCentralPubMedCrossRef Jacobs BL, You JS, Frey JW, Goodman CA, Gundermann DM, Hornberger TA (2013) Eccentric contractions increase the phosphorylation of tuberous sclerosis complex-2 (TSC2) and alter the targeting of TSC2 and the mechanistic target of rapamycin to the lysosome. J Physiol 591:4611–4620PubMedCentralPubMedCrossRef
88.
Zurück zum Zitat Menon S, Dibble CC, Talbott G, Hoxhaj G, Valvezan AJ, Takahashi H, Cantley LC, Manning BD (2014) Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156:771–785PubMedCentralPubMedCrossRef Menon S, Dibble CC, Talbott G, Hoxhaj G, Valvezan AJ, Takahashi H, Cantley LC, Manning BD (2014) Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156:771–785PubMedCentralPubMedCrossRef
89.
Zurück zum Zitat Sato T, Nakashima A, Guo L, Tamanoi F (2009) Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J Biol Chem 284:12783–12791PubMedCentralPubMedCrossRef Sato T, Nakashima A, Guo L, Tamanoi F (2009) Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J Biol Chem 284:12783–12791PubMedCentralPubMedCrossRef
90.
Zurück zum Zitat Dibble CC, Elis W, Menon S, Qin W, Klekota J, Asara JM, Finan PM, Kwiatkowski DJ, Murphy LO, Manning BD (2012) TBC1D7 is a third subunit of the TSC1–TSC2 complex upstream of mTORC1. Mol Cell 47:535–546PubMedCentralPubMedCrossRef Dibble CC, Elis W, Menon S, Qin W, Klekota J, Asara JM, Finan PM, Kwiatkowski DJ, Murphy LO, Manning BD (2012) TBC1D7 is a third subunit of the TSC1–TSC2 complex upstream of mTORC1. Mol Cell 47:535–546PubMedCentralPubMedCrossRef
91.
Zurück zum Zitat Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J (2003) Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13:1259–1268PubMedCrossRef Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J (2003) Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13:1259–1268PubMedCrossRef
92.
Zurück zum Zitat Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4:648–657PubMedCrossRef Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4:648–657PubMedCrossRef
93.
Zurück zum Zitat Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9:316–323PubMedCrossRef Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9:316–323PubMedCrossRef
94.
Zurück zum Zitat Shepherd PR, Withers DJ, Siddle K (1998) Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem J 333(Pt 3):471–490PubMedCentralPubMed Shepherd PR, Withers DJ, Siddle K (1998) Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem J 333(Pt 3):471–490PubMedCentralPubMed
95.
Zurück zum Zitat Alessi DR, Cohen P (1998) Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev 8:55–62PubMedCrossRef Alessi DR, Cohen P (1998) Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev 8:55–62PubMedCrossRef
96.
Zurück zum Zitat Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7:261–269PubMedCrossRef Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7:261–269PubMedCrossRef
97.
Zurück zum Zitat Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 307:1098–1101PubMedCrossRef Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 307:1098–1101PubMedCrossRef
98.
Zurück zum Zitat Hornberger TA, Chu WK, Mak YW, Hsiung JW, Huang SA, Chien S (2006) The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle. Proc Natl Acad Sci USA 103:4741–4746PubMedCentralPubMedCrossRef Hornberger TA, Chu WK, Mak YW, Hsiung JW, Huang SA, Chien S (2006) The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle. Proc Natl Acad Sci USA 103:4741–4746PubMedCentralPubMedCrossRef
99.
Zurück zum Zitat Deldicque L, Atherton P, Patel R, Theisen D, Nielens H, Rennie MJ, Francaux M (2008) Decrease in Akt/PKB signalling in human skeletal muscle by resistance exercise. Eur J Appl Physiol 104:57–65PubMedCrossRef Deldicque L, Atherton P, Patel R, Theisen D, Nielens H, Rennie MJ, Francaux M (2008) Decrease in Akt/PKB signalling in human skeletal muscle by resistance exercise. Eur J Appl Physiol 104:57–65PubMedCrossRef
100.
Zurück zum Zitat You JS, Lincoln HC, Kim CR, Frey JW, Goodman CA, Zhong XP, Hornberger TA (2014) The role of diacylglycerol kinase zeta and phosphatidic acid in the mechanical activation of mammalian target of rapamycin (mTOR) signaling and skeletal muscle hypertrophy. J Biol Chem 289:1551–1563PubMedCentralPubMedCrossRef You JS, Lincoln HC, Kim CR, Frey JW, Goodman CA, Zhong XP, Hornberger TA (2014) The role of diacylglycerol kinase zeta and phosphatidic acid in the mechanical activation of mammalian target of rapamycin (mTOR) signaling and skeletal muscle hypertrophy. J Biol Chem 289:1551–1563PubMedCentralPubMedCrossRef
101.
Zurück zum Zitat Smith EM, Finn SG, Tee AR, Browne GJ, Proud CG (2005) The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses. J Biol Chem 280:18717–18727PubMedCrossRef Smith EM, Finn SG, Tee AR, Browne GJ, Proud CG (2005) The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses. J Biol Chem 280:18717–18727PubMedCrossRef
102.
Zurück zum Zitat Bar-Peled L, Sabatini DM (2014) Regulation of mTORC1 by amino acids. Trends Cell Biol 24:400–406PubMedCrossRef Bar-Peled L, Sabatini DM (2014) Regulation of mTORC1 by amino acids. Trends Cell Biol 24:400–406PubMedCrossRef
103.
Zurück zum Zitat Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–1501PubMedCentralPubMedCrossRef Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–1501PubMedCentralPubMedCrossRef
104.
Zurück zum Zitat Long X, Ortiz-Vega S, Lin Y, Avruch J (2005) Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J Biol Chem 280:23433–23436PubMedCrossRef Long X, Ortiz-Vega S, Lin Y, Avruch J (2005) Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J Biol Chem 280:23433–23436PubMedCrossRef
105.
Zurück zum Zitat Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM (2010) Ragulator–Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290–303PubMedCentralPubMedCrossRef Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM (2010) Ragulator–Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290–303PubMedCentralPubMedCrossRef
106.
Zurück zum Zitat Sekiguchi T, Hirose E, Nakashima N, Ii M, Nishimoto T (2001) Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J Biol Chem 276:7246–7257PubMedCrossRef Sekiguchi T, Hirose E, Nakashima N, Ii M, Nishimoto T (2001) Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J Biol Chem 276:7246–7257PubMedCrossRef
107.
108.
Zurück zum Zitat Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM (2013) A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340:1100–1106PubMedCentralPubMedCrossRef Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM (2013) A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340:1100–1106PubMedCentralPubMedCrossRef
109.
Zurück zum Zitat Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM (2012) Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150:1196–1208PubMedCentralPubMedCrossRef Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM (2012) Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150:1196–1208PubMedCentralPubMedCrossRef
110.
Zurück zum Zitat Zhang CS, Jiang B, Li M, Zhu M, Peng Y, Zhang YL, Wu YQ, Li TY, Liang Y, Lu Z, Lian G, Liu Q, Guo H, Yin Z, Ye Z, Han J, Wu JW, Yin H, Lin SY, Lin SC (2014) The lysosomal v-ATPase–ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab 20:526–540PubMedCrossRef Zhang CS, Jiang B, Li M, Zhu M, Peng Y, Zhang YL, Wu YQ, Li TY, Liang Y, Lu Z, Lian G, Liu Q, Guo H, Yin Z, Ye Z, Han J, Wu JW, Yin H, Lin SY, Lin SC (2014) The lysosomal v-ATPase–ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab 20:526–540PubMedCrossRef
111.
Zurück zum Zitat Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8:917–929PubMedCrossRef Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8:917–929PubMedCrossRef
112.
Zurück zum Zitat Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334:678–683PubMedCentralPubMedCrossRef Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334:678–683PubMedCentralPubMedCrossRef
113.
Zurück zum Zitat Han JM, Jeong SJ, Park MC, Kim G, Kwon NH, Kim HK, Ha SH, Ryu SH, Kim S (2012) Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149:410–424PubMedCrossRef Han JM, Jeong SJ, Park MC, Kim G, Kwon NH, Kim HK, Ha SH, Ryu SH, Kim S (2012) Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149:410–424PubMedCrossRef
114.
Zurück zum Zitat Tsun ZY, Bar-Peled L, Chantranupong L, Zoncu R, Wang T, Kim C, Spooner E, Sabatini DM (2013) The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell 52:495–505PubMedCrossRef Tsun ZY, Bar-Peled L, Chantranupong L, Zoncu R, Wang T, Kim C, Spooner E, Sabatini DM (2013) The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell 52:495–505PubMedCrossRef
115.
Zurück zum Zitat Averous J, Lambert-Langlais S, Carraro V, Gourbeyre O, Parry L, B’Chir W, Muranishi Y, Jousse C, Bruhat A, Maurin AC, Proud CG, Fafournoux P (2014) Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids. Cell Signal 26:1918–1927PubMedCrossRef Averous J, Lambert-Langlais S, Carraro V, Gourbeyre O, Parry L, B’Chir W, Muranishi Y, Jousse C, Bruhat A, Maurin AC, Proud CG, Fafournoux P (2014) Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids. Cell Signal 26:1918–1927PubMedCrossRef
116.
Zurück zum Zitat Drummond MJ, Fry CS, Glynn EL, Timmerman KL, Dickinson JM, Walker DK, Gundermann DM, Volpi E, Rasmussen BB (2011) Skeletal muscle amino acid transporter expression is increased in young and older adults following resistance exercise. J Appl Physiol 111:135–142PubMedCentralPubMedCrossRef Drummond MJ, Fry CS, Glynn EL, Timmerman KL, Dickinson JM, Walker DK, Gundermann DM, Volpi E, Rasmussen BB (2011) Skeletal muscle amino acid transporter expression is increased in young and older adults following resistance exercise. J Appl Physiol 111:135–142PubMedCentralPubMedCrossRef
117.
Zurück zum Zitat Churchward-Venne TA, Burd NA, Mitchell CJ, West DW, Philp A, Marcotte GR, Baker SK, Baar K, Phillips SM (2012) Supplementation of a suboptimal protein dose with leucine or essential amino acids: effects on myofibrillar protein synthesis at rest and following resistance exercise in men. J Physiol 590:2751–2765PubMedCentralPubMedCrossRef Churchward-Venne TA, Burd NA, Mitchell CJ, West DW, Philp A, Marcotte GR, Baker SK, Baar K, Phillips SM (2012) Supplementation of a suboptimal protein dose with leucine or essential amino acids: effects on myofibrillar protein synthesis at rest and following resistance exercise in men. J Physiol 590:2751–2765PubMedCentralPubMedCrossRef
118.
Zurück zum Zitat Ktistakis NT, Manifava M, Schoenfelder P, Rotondo S (2012) How phosphoinositide 3-phosphate controls growth downstream of amino acids and autophagy downstream of amino acid withdrawal. Biochem Soc Trans 40:37–43PubMedCrossRef Ktistakis NT, Manifava M, Schoenfelder P, Rotondo S (2012) How phosphoinositide 3-phosphate controls growth downstream of amino acids and autophagy downstream of amino acid withdrawal. Biochem Soc Trans 40:37–43PubMedCrossRef
119.
Zurück zum Zitat Oshiro N, Rapley J, Avruch J (2014) Amino acids activate mammalian target of rapamycin (mTOR) complex 1 without changing Rag GTPase guanyl nucleotide charging. J Biol Chem 289:2658–2674PubMedCentralPubMedCrossRef Oshiro N, Rapley J, Avruch J (2014) Amino acids activate mammalian target of rapamycin (mTOR) complex 1 without changing Rag GTPase guanyl nucleotide charging. J Biol Chem 289:2658–2674PubMedCentralPubMedCrossRef
120.
Zurück zum Zitat Schmierer B, Hill CS (2005) Kinetic analysis of Smad nucleocytoplasmic shuttling reveals a mechanism for transforming growth factor beta-dependent nuclear accumulation of Smads. Mol Cell Biol 25:9845–9858PubMedCentralPubMedCrossRef Schmierer B, Hill CS (2005) Kinetic analysis of Smad nucleocytoplasmic shuttling reveals a mechanism for transforming growth factor beta-dependent nuclear accumulation of Smads. Mol Cell Biol 25:9845–9858PubMedCentralPubMedCrossRef
121.
Zurück zum Zitat Marshall A, Salerno MS, Thomas M, Davies T, Berry C, Dyer K, Bracegirdle J, Watson T, Dziadek M, Kambadur R, Bower R, Sharma M (2008) Mighty is a novel promyogenic factor in skeletal myogenesis. Exp Cell Res 314:1013–1029PubMedCrossRef Marshall A, Salerno MS, Thomas M, Davies T, Berry C, Dyer K, Bracegirdle J, Watson T, Dziadek M, Kambadur R, Bower R, Sharma M (2008) Mighty is a novel promyogenic factor in skeletal myogenesis. Exp Cell Res 314:1013–1029PubMedCrossRef
122.
123.
Zurück zum Zitat Gaarenstroom T, Hill CS (2014) TGF-beta signaling to chromatin: how Smads regulate transcription during self-renewal and differentiation. Semin Cell Dev Biol 32:107–118PubMedCrossRef Gaarenstroom T, Hill CS (2014) TGF-beta signaling to chromatin: how Smads regulate transcription during self-renewal and differentiation. Semin Cell Dev Biol 32:107–118PubMedCrossRef
124.
Zurück zum Zitat Winbanks CE, Weeks KL, Thomson RE, Sepulveda PV, Beyer C, Qian H, Chen JL, Allen JM, Lancaster GI, Febbraio MA, Harrison CA, McMullen JR, Chamberlain JS, Gregorevic P (2012) Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin. J Cell Biol 197:997–1008PubMedCentralPubMedCrossRef Winbanks CE, Weeks KL, Thomson RE, Sepulveda PV, Beyer C, Qian H, Chen JL, Allen JM, Lancaster GI, Febbraio MA, Harrison CA, McMullen JR, Chamberlain JS, Gregorevic P (2012) Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin. J Cell Biol 197:997–1008PubMedCentralPubMedCrossRef
125.
Zurück zum Zitat Amirouche A, Durieux AC, Banzet S, Koulmann N, Bonnefoy R, Mouret C, Bigard X, Peinnequin A, Freyssenet D (2009) Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. Endocrinology 150:286–294PubMedCrossRef Amirouche A, Durieux AC, Banzet S, Koulmann N, Bonnefoy R, Mouret C, Bigard X, Peinnequin A, Freyssenet D (2009) Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. Endocrinology 150:286–294PubMedCrossRef
126.
Zurück zum Zitat Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ (2009) Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol 296:C1258–C1270PubMedCrossRef Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ (2009) Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol 296:C1258–C1270PubMedCrossRef
127.
Zurück zum Zitat Welle S, Burgess K, Mehta S (2009) Stimulation of skeletal muscle myofibrillar protein synthesis, p70 S6 kinase phosphorylation, and ribosomal protein S6 phosphorylation by inhibition of myostatin in mature mice. Am J Physiol Endocrinol Metab 296:E567–E572PubMedCentralPubMedCrossRef Welle S, Burgess K, Mehta S (2009) Stimulation of skeletal muscle myofibrillar protein synthesis, p70 S6 kinase phosphorylation, and ribosomal protein S6 phosphorylation by inhibition of myostatin in mature mice. Am J Physiol Endocrinol Metab 296:E567–E572PubMedCentralPubMedCrossRef
128.
Zurück zum Zitat Sartori R, Schirwis E, Blaauw B, Bortolanza S, Zhao J, Enzo E, Stantzou A, Mouisel E, Toniolo L, Ferry A, Stricker S, Goldberg AL, Dupont S, Piccolo S, Amthor H, Sandri M (2013) BMP signaling controls muscle mass. Nat Genet 45:1309–1318PubMedCrossRef Sartori R, Schirwis E, Blaauw B, Bortolanza S, Zhao J, Enzo E, Stantzou A, Mouisel E, Toniolo L, Ferry A, Stricker S, Goldberg AL, Dupont S, Piccolo S, Amthor H, Sandri M (2013) BMP signaling controls muscle mass. Nat Genet 45:1309–1318PubMedCrossRef
129.
Zurück zum Zitat Winbanks CE, Chen JL, Qian H, Liu Y, Bernardo BC, Beyer C, Watt KI, Thomson RE, Connor T, Turner BJ, McMullen JR, Larsson L, McGee SL, Harrison CA, Gregorevic P (2013) The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. J Cell Biol 203:345–357PubMedCentralPubMedCrossRef Winbanks CE, Chen JL, Qian H, Liu Y, Bernardo BC, Beyer C, Watt KI, Thomson RE, Connor T, Turner BJ, McMullen JR, Larsson L, McGee SL, Harrison CA, Gregorevic P (2013) The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. J Cell Biol 203:345–357PubMedCentralPubMedCrossRef
130.
Zurück zum Zitat Mackenzie MG, Hamilton DL, Pepin M, Patton A, Baar K (2013) Inhibition of myostatin signaling through notch activation following acute resistance exercise. PLoS ONE 8(7):e68743PubMedCentralPubMedCrossRef Mackenzie MG, Hamilton DL, Pepin M, Patton A, Baar K (2013) Inhibition of myostatin signaling through notch activation following acute resistance exercise. PLoS ONE 8(7):e68743PubMedCentralPubMedCrossRef
131.
Zurück zum Zitat Carlson ME, Hsu M, Conboy IM (2008) Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature 454:528–532PubMedCrossRef Carlson ME, Hsu M, Conboy IM (2008) Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature 454:528–532PubMedCrossRef
132.
Zurück zum Zitat Chu J, Jeffries S, Norton JE, Capobianco AJ, Bresnick EH (2002) Repression of activator protein-1-mediated transcriptional activation by the Notch-1 intracellular domain. J Biol Chem 277:7587–7597PubMedCrossRef Chu J, Jeffries S, Norton JE, Capobianco AJ, Bresnick EH (2002) Repression of activator protein-1-mediated transcriptional activation by the Notch-1 intracellular domain. J Biol Chem 277:7587–7597PubMedCrossRef
134.
Zurück zum Zitat Benovic JL, von Zastrow M (2014) Editorial overview: cell regulation: the ins and outs of G protein-coupled receptors. Curr Opin Cell Biol 27:v–viPubMedCrossRef Benovic JL, von Zastrow M (2014) Editorial overview: cell regulation: the ins and outs of G protein-coupled receptors. Curr Opin Cell Biol 27:v–viPubMedCrossRef
136.
Zurück zum Zitat Sirvent P, Douillard A, Galbes O, Ramonatxo C, Py G, Candau R, Lacampagne A (2014) Effects of chronic administration of clenbuterol on contractile properties and calcium homeostasis in rat extensor digitorum longus muscle. PLoS ONE 9:e100281PubMedCentralPubMedCrossRef Sirvent P, Douillard A, Galbes O, Ramonatxo C, Py G, Candau R, Lacampagne A (2014) Effects of chronic administration of clenbuterol on contractile properties and calcium homeostasis in rat extensor digitorum longus muscle. PLoS ONE 9:e100281PubMedCentralPubMedCrossRef
137.
Zurück zum Zitat Bakker AJ, Head SI, Wareham AC, Stephenson DG (1998) Effect of clenbuterol on sarcoplasmic reticulum function in single skinned mammalian skeletal muscle fibers. Am J Physiol 274:C1718–C1726PubMed Bakker AJ, Head SI, Wareham AC, Stephenson DG (1998) Effect of clenbuterol on sarcoplasmic reticulum function in single skinned mammalian skeletal muscle fibers. Am J Physiol 274:C1718–C1726PubMed
138.
Zurück zum Zitat Douillard A, Galbes O, Begue G, Rossano B, Levin J, Vernus B, Bonnieu A, Candau R, Py G (2012) Calpastatin overexpression in the skeletal muscle of mice prevents clenbuterol-induced muscle hypertrophy and phenotypic shift. Clin Exp Pharmacol Physiol 39:364–372PubMedCrossRef Douillard A, Galbes O, Begue G, Rossano B, Levin J, Vernus B, Bonnieu A, Candau R, Py G (2012) Calpastatin overexpression in the skeletal muscle of mice prevents clenbuterol-induced muscle hypertrophy and phenotypic shift. Clin Exp Pharmacol Physiol 39:364–372PubMedCrossRef
139.
Zurück zum Zitat von Maltzahn J, Bentzinger CF, Rudnicki MA (2012) Wnt7a–Fzd7 signalling directly activates the Akt/mTOR anabolic growth pathway in skeletal muscle. Nat Cell Biol 14:186–191CrossRef von Maltzahn J, Bentzinger CF, Rudnicki MA (2012) Wnt7a–Fzd7 signalling directly activates the Akt/mTOR anabolic growth pathway in skeletal muscle. Nat Cell Biol 14:186–191CrossRef
140.
Zurück zum Zitat Porporato PE, Filigheddu N, Reano S, Ferrara M, Angelino E, Gnocchi VF, Prodam F, Ronchi G, Fagoonee S, Fornaro M, Chianale F, Baldanzi G, Surico N, Sinigaglia F, Perroteau I, Smith RG, Sun Y, Geuna S, Graziani A (2013) Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice. J Clin Investig 123:611–622PubMedCentralPubMed Porporato PE, Filigheddu N, Reano S, Ferrara M, Angelino E, Gnocchi VF, Prodam F, Ronchi G, Fagoonee S, Fornaro M, Chianale F, Baldanzi G, Surico N, Sinigaglia F, Perroteau I, Smith RG, Sun Y, Geuna S, Graziani A (2013) Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice. J Clin Investig 123:611–622PubMedCentralPubMed
141.
Zurück zum Zitat White JP, Wrann CD, Rao RR, Nair SK, Jedrychowski MP, You J-S, Martínez-Redondo V, Gygi SP, Ruas JL, Hornberger TA, Wu Z, Glass DJ, Piao X, Spiegelman BM (2014) G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy. PNAS. doi:10.1073/pnas.1417898111 White JP, Wrann CD, Rao RR, Nair SK, Jedrychowski MP, You J-S, Martínez-Redondo V, Gygi SP, Ruas JL, Hornberger TA, Wu Z, Glass DJ, Piao X, Spiegelman BM (2014) G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy. PNAS. doi:10.​1073/​pnas.​1417898111
142.
Zurück zum Zitat Minetti GC, Feige JN, Rosenstiel A, Bombard F, Meier V, Werner A, Bassilana F, Sailer AW, Kahle P, Lambert C, Glass DJ, Fornaro M (2011) Galphai2 signaling promotes skeletal muscle hypertrophy, myoblast differentiation, and muscle regeneration. Sci Signal 4:ra80PubMedCrossRef Minetti GC, Feige JN, Rosenstiel A, Bombard F, Meier V, Werner A, Bassilana F, Sailer AW, Kahle P, Lambert C, Glass DJ, Fornaro M (2011) Galphai2 signaling promotes skeletal muscle hypertrophy, myoblast differentiation, and muscle regeneration. Sci Signal 4:ra80PubMedCrossRef
143.
Zurück zum Zitat Kline WO, Panaro FJ, Yang H, Bodine SC (2007) Rapamycin inhibits the growth and muscle-sparing effects of clenbuterol. J Appl Physiol 102:740–747PubMedCrossRef Kline WO, Panaro FJ, Yang H, Bodine SC (2007) Rapamycin inhibits the growth and muscle-sparing effects of clenbuterol. J Appl Physiol 102:740–747PubMedCrossRef
144.
Zurück zum Zitat Phillips BE, Williams JP, Gustafsson T, Bouchard C, Rankinen T, Knudsen S, Smith K, Timmons JA, Atherton PJ (2013) Molecular networks of human muscle adaptation to exercise and age. PLoS Genet 9:e1003389PubMedCentralPubMedCrossRef Phillips BE, Williams JP, Gustafsson T, Bouchard C, Rankinen T, Knudsen S, Smith K, Timmons JA, Atherton PJ (2013) Molecular networks of human muscle adaptation to exercise and age. PLoS Genet 9:e1003389PubMedCentralPubMedCrossRef
Metadaten
Titel
The Molecular Basis for Load-Induced Skeletal Muscle Hypertrophy
verfasst von
George R. Marcotte
Daniel W. D. West
Keith Baar
Publikationsdatum
01.03.2015
Verlag
Springer US
Erschienen in
Calcified Tissue International / Ausgabe 3/2015
Print ISSN: 0171-967X
Elektronische ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-014-9925-9

Weitere Artikel der Ausgabe 3/2015

Calcified Tissue International 3/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.