Skip to main content
Log in

Advances in the noninvasive assessment of bone density, quality, and structure

  • Diagnostics: The Correlation Of Bone Mineral Density And Biochemical Markers To Fracture Risk—Where Do We Go From Here?
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Recent advances in the development of methods to assess the skeleton noninvasively have contributed to screening for risk of osteoporosis, early detection of the disease, and effective monitoring of its progression and response to therapy. The capability now exists to evaluate the peripheral, central, or entire skeleton as well as the trabecular bone or cortical bone envelopes accurately and precisely, with the capacity to determine bone strength and predict fracture risk. In this article we examine the current and future capabilities of quantitative computed tomography (QCT), quantitative ultrasound (QUS), and magnetic resonance microscopy (µMR) to assess architectural and densitometric properties of the skeleton to enhance the prediction of fracture risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cann CE, Genant HK, Kolb FO, Ettinger B (1984) Quantitative computed tomography for prediction of vertebral fracture risk. Bone 5:1–7

    Google Scholar 

  2. Ross PD, Heilbrunn L, Wasnich RD, Davis J, Vogel JM (1989) Methodologie considerations in osteoporosis research. J Bone Miner Res 4:649–656

    PubMed  CAS  Google Scholar 

  3. Pacifici R, Rupich R, Griffin M, Chines A, Susman N, Avioli LV (1990) Dual energy radiography versus quantitative computed tomography for the diagnosis of osteoporosis. J Clin Endocrinol Metab 70:705–710

    Article  PubMed  CAS  Google Scholar 

  4. Yu W, Gltier CC, Grampp S, Jergas M, Fuerst T, Wu CY, Fan B, Genant KH (1995) Spinal bone mineral assessment in postmenopausal women: a comparison between dual x-ray absorptiometry and quantitative computed tomography. Osteoporos Int 5:433–439

    Article  PubMed  CAS  Google Scholar 

  5. Guglielmi G, Grimston SK, Fischer KC, Pacifici R (1994) Osteoporosis: diagnosis with lateral and posteroanterior dual x-ray absorptiometry compared with quantitative CT. Radiology 192:845–850

    PubMed  CAS  Google Scholar 

  6. Block J, Smith R, Glüer CC, Steiger P, Ettinger B, Genant HK (1989) Models of spinal trabecular bone loss as determined by quantitative computed tomography. J Bone Miner Res 4:249–257

    PubMed  CAS  Google Scholar 

  7. Kalender WA, Klotz E, Süss C (1987) Vertebral bone mineral analysis: an integrated approach. Radiology 164:419–423

    PubMed  CAS  Google Scholar 

  8. Genant HK, Steiger P, Block JE, Glüer CC, et al. (1987) Quantitative computed tomography: update 1987. Calcif Tissue Int 41:179–186

    Article  PubMed  CAS  Google Scholar 

  9. Steiger P, Glüer C, Steiger S, Genant H (1988) Determination of an object coordinate system for the longitudinal three-dimensional assessment of vertebral bone mineral content. Presented at the 74th RSNA Scientific Assembly and Annual Meeting, Chicago, IL. November 1988

  10. Lang T, Song S, Genant HK (1995) Performance of a surface-matching algorithm for 3-D alignment of volumetric QCT studies (abstract). Osteoporos Int 5(35):295

    Google Scholar 

  11. Cody DD, Goldstein SA, Flynn MJ, Brown EB (1991) Correlations between vertebral regional bone mineral density (rBMD) and whole bone fracture load. Spine 16:146–154

    PubMed  CAS  Google Scholar 

  12. Flynn MJ, Cody DD (1993) The assessment of vertebral bone macroarchitecture with x-ray computed tomography. Calcif Tissue Int 53:S170-S175

    Article  PubMed  Google Scholar 

  13. Sandor T, Felsenberg D, Kalender WA, Clain A, Broen E (1992) Compact and trabecular components of the spine using quantitative computed tomography. Calcif Tissue Int 50:502–506

    Article  PubMed  CAS  Google Scholar 

  14. Sandor T, Felsenberg D. Kalender W, Brown E (1992) Heterogeneity of the loss of BMD from spinal cortical bone. 9th Int Workshop of Bone Density, Traverse City, MI, 1992

  15. Rockoff SD, Sweet E, Bluestein J (1969) The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 3:163–75

    Article  PubMed  CAS  Google Scholar 

  16. McBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AA (1985) Prediction of vertebral body compressive fracture using: quantitative computed tomography. J Bone Joint Surs Am 67:1206–1214

    CAS  Google Scholar 

  17. Faulkner KG, Cann CE, Hasegawa BH (1990) CT-derived finite element models to determine vertebral cortex strength. In: Loew MH (ed) Medical imaging IV: image processing. SPIE, Newport Beach, CA, pp 194–202

    Google Scholar 

  18. Reiser U, Genant HK (1984) Determination of bone mineral content in the femoral neck by quantitative computed tomography. Presented at the 70th Scientific Meeting, Radiological Society of North America, Dallas, TX, November, 1984

  19. Sartoris DJ, Andre M, Resnick C, Resnick D (1986) Trabecular bone density in the proximal femur: quantitative CT assessment. Radiology 160:707–712

    PubMed  CAS  Google Scholar 

  20. Esses SI, Lotz JC, Haves WC (1989) Biomechanical properties of the proximal femur determined in vitro by single-enemy quantitative computed tomography. J Bone Miner Res 4:715–722

    PubMed  CAS  Google Scholar 

  21. Faulkner KG, McClung M, Cummings SR (1994) Automated evaluation of hip axis length for predicting hip fracture. J Bone Miner Res 9:1065–1070

    Article  PubMed  CAS  Google Scholar 

  22. Beck TJ, Christopher BR, Warden KE, Scott WW, Rao GU (1990) Predicting femoral neck strength from bone mineral data: a structural approach. Invest Radiol 25:6–18

    Article  PubMed  CAS  Google Scholar 

  23. Gliier CC, Cummings SR, Bauer DC, Stone K, Pressman A, Genant HK (1994) Associations between quantitative ultrasound and recent fractures (abstract). J Bone Miner Res 9:S153

    Google Scholar 

  24. Phillips JR, Williams JF, Melick RA (1975) Prediction of the strength of the neck of femur from its radiological appearance. Biomed Engr 10:367–372

    CAS  Google Scholar 

  25. Chevalier F, Laval-Jeantet AM, Laval-Jeantet M, Bergot C (1992) CT image analysis of the vertebral trabecular network in vivo. Calcif Tissue Int 51:8–13

    Article  PubMed  CAS  Google Scholar 

  26. Ito M, Ohki M, Hayashi K, Yamada M, Uetani M, Nakamura T (1995) Trabecular texture analysis of CT images in the relationship with spinal fracture. Radiology 194:55–59

    PubMed  CAS  Google Scholar 

  27. Durand EP, Rüegsegger P (1991) Cancellous bone structure: analysis of high-resolution CT images with the run-length method. J Comput Assist Tomogr 15:133–139

    Article  PubMed  CAS  Google Scholar 

  28. Durand EP, Rüegsegger P (1992) High-contrast resolution of CT images for bone structure analysis. Med Phys 19:569–573

    Article  PubMed  CAS  Google Scholar 

  29. Rüegsegger P, Elsasser U, Anliker M, Gnehm H, Kind H, Prader A (1976) Quantification of bone mineralization using computed tomography. Radiology 121:93–97

    PubMed  Google Scholar 

  30. Rüegsegger P, Durand E, Dambacher MA (1991) Localization of regional forearm bone loss from high resolution computed tomographic images. Osteoporos Int 1:76–80

    Article  PubMed  Google Scholar 

  31. Feldkamp LA, Goldstein SA, Partitt AM, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4:3–11

    Article  PubMed  CAS  Google Scholar 

  32. Kuhn JL, Goldstein SA, Feldkamp LA, Goulet RW, Jesion G (1990) Evaluation of a meirocomputed tomography system to study trabecular bone structure. J Orthop Res 8:833–842

    Article  PubMed  CAS  Google Scholar 

  33. Engelke K, Song S, Klifa C, Gliier CC, Genant HK (1995) 2D and 3D analysis techniques of trabecular bone structure. Perth International Bone Meeting: bone fragility in the year 2000: clinical measurement. Scott Wilson & Ivan Price, Melbourne. Australia, 42

  34. Antich PP, Anderson JA, Ashman RB, Dowdey JE, Gonzales J, Murry RC, Zerwekh JE, Pak CY (1991) Measurement of mechanical properties of bone material in vitro by ultrasound reflection: methodology and comparison with ultrasound transmission. J Bone Miner Res 6:417–426

    Article  PubMed  CAS  Google Scholar 

  35. Miller CG, Herd RJM, Ramalingam T, Fogelman I, Blake GM (1993) Ultrasonic velocity measurements through the calcaneus: Which velocity should be measured? Osteoporos Int 3:31–35

    Article  PubMed  CAS  Google Scholar 

  36. Heaney RP, Avioli LV, Chestnut CH, Lappe J, Recker RR, Brandburger GH (1989) Osteoporotic bone fragility: detection by ultrasound transmission velocity. JAMA 261:2986–2990

    Article  PubMed  CAS  Google Scholar 

  37. Orgee J, McCloskey EV, Foster H, Coombes G, Khan S, Kanis JA (1994) Tibial ultrasound velocity-a useful clinical measure of skeletal status (abstract). J Bone Miner Res 9:S156

    Google Scholar 

  38. Foldes J, Rimon A, Popovitzer M (1994) Ultrasonic measurement of the tibia: initial evaluation of a novel approach (abstract 58). Bath Conference on Osteoporosis and Bone Mineral Measurement, Bath, UK. The British Institute of Radiology, June 1994

  39. Faulkner KG, McClung MR, Coleman LJ, Kingston-Sadahl E (1994) Quantitative ultrasound of the heel: correlation with densitometric measurements at different skeletal sites. Osteoporos Int 4:42–47

    Article  PubMed  CAS  Google Scholar 

  40. Langton CM, Palmer SB, Porter RW (1984) The measurement of broadband ultrasound attenuation in cancellous bone. Eniz Med 13:89–91

    Article  CAS  Google Scholar 

  41. Gliier CC, Vahlensieck M, Faulkner KG, Engelke K, Black D, Genant HK (1992) Sitematched calcaneal measurements of broadband ultrasound attenuation and single X-ray absorptiometry: Do they measure different skeletal properties? J Bone Miner Res 7:1071–1079

    Article  Google Scholar 

  42. Herd RJM, Ramalingham T, Ryan PJ, Fogelman I, Blake GM (1992) Measurements of broadband ultrasound attenuation in the calcaneus in premenopausal and postmenopausal women. Osteoporos Int 2:247–251

    Article  PubMed  CAS  Google Scholar 

  43. Agrcn M, Karellas A, Leahey D, Marks S, Baran D (1991) Ultrasound attenuation of the calcaneus: a sensitive and specific discriminator of osteopenia in postmenopausal women. Calcif Tissue Int 48:240–244

    Article  Google Scholar 

  44. Baran DT, McCarthy CK, Leahey D, Lew R (1991) Broadband ultrasound attenuation of the calcaneus predicts lumbar and femoral neck density in Caucasian women: a preliminary study. Osteoporos Int 1:110–113

    Article  PubMed  CAS  Google Scholar 

  45. Salamone LM, Krall EA, Harris S, Dawson-Hughes B (1994) Comparison of broadband ultrasound attenuation to single x-ray absorptiometry measurements at the calcaneus in postmenopausal women. Calcif Tissue Int 54:87–90

    Article  PubMed  CAS  Google Scholar 

  46. Herd RJ, Blake GM, Ramalinham T, Miller CG, Ryan PJ, Fogelman I (1993) Measurements of postmenopausal bone loss with a new contact ultrasound system. Calcif Tissue Int 53:153–157

    Article  PubMed  CAS  Google Scholar 

  47. Glüer CC, Wu CY, Jergas M, Goldstein SA, Genant HK (1994) Three quantitative ultrasound parameters reflect bone structure. Calcif Tissue Int 55:46–52

    Article  PubMed  Google Scholar 

  48. McCarthy RN, Jeffcott LB, McCartney RN (1990) Ultrasound speed in equine cortical bone: effects of orientation, density, porosity, and temperature. J Biomech 23:1139–1143

    Article  PubMed  CAS  Google Scholar 

  49. Glüer CC, Wu CY, Genant HK (1993) Broadband ultrasound attenuation signals depend on trabecular orientation: an invitro study. Osteoporos Int 3:185–191

    Article  PubMed  Google Scholar 

  50. Grimm MJ, Chung H-W. Wehrli FW, Williams JL (1996) Assessment of mechanical and structural properties of trabecular bone using ultrasound velocity and attenuation. J Bioengineering (in press)

  51. Grimm MJ, Williams JL (1993) Use of ultrasound attenuation and velocity to estimate Young’s modulus in trabecular bone. Nineteenth IEEE Annual Northeast Bioengineering Conference, Newark, NJ, pp 62–63

  52. Parfitt AM, Matthews C, Villanueva A (1983) Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. J Clin Invest 72:1396–1409

    Article  PubMed  CAS  Google Scholar 

  53. Steginan MR, Heaney RP, Recker RR (1995) Comparison of speed of sound ultrasound with single photon absorptiometry for determining fracture odds ratios. J Bone Miner Res 10: 346–352

    Article  Google Scholar 

  54. Foldes AJ, Popovtzer MM (1995) Ultrasonic measurement of the tibia: clinical evaluation (abstract 56). Osteoporos Int 5: 301

    Google Scholar 

  55. Alenfeld F. Wüster C. Beck C, Ziegler R (1995) Validity of ultrasound measurements of bone mineral density on the phalanges of the hand. Perth International Bone Meeting, Fremantle, Australia, p 54

  56. Antich P, Mason R, McColl R, Zerwech J, Pak C (1994) Trabecular architecture studies by 3D MRI microscopy in bone biopsies (abstract). J Bone Miner Res 9(suppl 1):S327

    Google Scholar 

  57. Chung H, Wehrli F, Williams J, Kugelmass S, Wehrli S (1995) Quantitative analysis of trabecular microstructure by 400 mHz nuclear magnetic resonance imaging. J Bone Miner Res 10:803–811

    Article  PubMed  CAS  Google Scholar 

  58. Jara H, Wehrli FW, Chung H, Ford JC (1993) High-resolution variable flip angle 3D MR imaging of trabecular microstructure in vivo. Magn Reson Med 29:528–539

    Article  PubMed  CAS  Google Scholar 

  59. Majumdar S, Genant H, Grampp S, Jergas M, Newitt D, Gies A (1994) Analysis of trabecular bone structure in the distal radius using high resolution MRI. Eur J Radiol 4:517–524

    Google Scholar 

  60. Majumdar S, Genant H, Gies A, Guglielimi G (1993) Regional variations in trabecular structure in the calcaneus assessed using high resolution magnetic resonance images and quantitative imasie analysis (abstract). J Bone Miner Res 8S: 351

    Google Scholar 

  61. Ouyang X, Lang P, Selby K, Zucconi F, Gindele A, Klifa C, Engelke K, Majumdar S, Genant HK (1995) Analysis of high resolution MRI images of calcaneus: gray-level thresholding and trabecular quantification. Society of Magnetic Resonance Third Scientific Meeting, Nice, France, June, 1995

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genant, H.K., Lang, T.F., Engelke, K. et al. Advances in the noninvasive assessment of bone density, quality, and structure. Calcif Tissue Int 59 (Suppl 1), S10–S15 (1996). https://doi.org/10.1007/s002239900169

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002239900169

Keywords

Navigation