Skip to main content
Log in

Beyond lipid-lowering: effects of statins on endothelial nitric oxide

  • Review Article
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Endothelial dysfunction is now recognised as an important process in the pathogenesis of atherosclerosis. Nitric oxide (NO) release by the endothelium regulates blood flow, inflammation and platelet aggregation, and consequently its disruption during endothelial dysfunction can decrease plaque stability and encourage the formation of atherosclerotic lesions and thrombi. Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (statins) are often utilised in the prevention of coronary heart disease due to their efficacy at lowering lipid levels. However, statins may also prevent atherosclerotic disease by non-lipid or pleiotropic effects, for example, improving endothelial function by promoting the production of NO. There are various mechanisms whereby statins may alter NO release, such as inhibiting the production of mevalonate and important isoprenoid intermediates, thereby preventing the isoprenylation of the small GTPase Rho, which negatively regulates the expression of endothelial nitric oxide synthase (eNOS). Furthermore, statins may also increase eNOS activity via post-translational activation of the phosphatidylinositol 3-kinase/protein kinase Akt (PI3 K/Akt) pathway and/or through an interaction with the molecular chaperone heat-shock protein 90 (HSP90). Data suggest that statins may vary in their efficacy for enhancing the release of NO, and the mechanisms dictating these differences are not yet clear. By increasing NO production, statins may interfere with atherosclerotic lesion development, stabilise plaque, inhibit platelet aggregation, improve blood flow and protect against ischaemia. Therefore, the ability of statins to improve endothelial function through the release of NO may partially account for their beneficial effects at reducing the incidence of cardiovascular events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143

    CAS  PubMed  Google Scholar 

  2. Kinlay S, Ganz P (2000) Relation between endothelial dysfunction and the acute coronary syndrome: implications for therapy. Am J Cardiol 86[Suppl]:10J–13J

  3. Liao JK (1998) Endothelium and acute coronary syndromes. Clin Chem 44:1799–1808

    CAS  PubMed  Google Scholar 

  4. Libby P (2001) Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 104:365–372

    CAS  PubMed  Google Scholar 

  5. Joannides R, Haefeli WE, Linder L, Richard V, Bakkali EH, Thuillez C, Luscher TF (1995) Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation 91:1314–1319

    CAS  PubMed  Google Scholar 

  6. Garg UC, Hassid A (1989) Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83:1774–1777

    CAS  PubMed  Google Scholar 

  7. Fleming I, Busse R (1999) NO: the primary EDRF. J Mol Cell Cardiol 31:514

    Article  Google Scholar 

  8. Vallance P, Collier J, Moncada S (1989) Nitric oxide synthesised from L-arginine mediates endothelium dependent dilatation in human veins in vivo. Cardiovasc Res 23:1053–1057

    CAS  PubMed  Google Scholar 

  9. Dimmeler S, Zeiher AM (1999) Nitric oxide—an endothelial cell survival factor. Cell Death Differ 6:964–968

    Article  CAS  PubMed  Google Scholar 

  10. Radomski MW, Palmer RM, Moncada S (1987) Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 2:1057–1058

    CAS  PubMed  Google Scholar 

  11. Peng HB, Libby P, Liao JK (1995) Induction and stabilization of I kappa B alpha by nitric oxide mediates inhibition of NF-kappa B. J Biol Chem 270:14214–14219

    CAS  PubMed  Google Scholar 

  12. Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A 88:4651–4655

    CAS  PubMed  Google Scholar 

  13. Lefer AM, Campbell B, Shin YK, Scalia R, Hayward R, Lefer DJ (1999) Simvastatin preserves the ischemic-reperfused myocardium in normocholesterolemic rat hearts. Circulation 100:178–184

    CAS  PubMed  Google Scholar 

  14. De Caterina R, Libby P, Peng HB, Thannickal VJ, Rajavashisth TB, Gimbrone MA Jr, Shin WS, Liao JK (1995) Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 96:60–68

    PubMed  Google Scholar 

  15. Tsao PS, Wang B, Buitrago R, Shyy JY, Cooke JP (1997) Nitric oxide regulates monocyte chemotactic protein-1. Circulation 96:934–940

    CAS  PubMed  Google Scholar 

  16. Ijem J, Granlie C (2000) More than cholesterol: the complexity of coronary artery disease. S D J Med 53:489–491

    CAS  PubMed  Google Scholar 

  17. Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377:239–242

    Google Scholar 

  18. Huang Z, Huang PL, Ma J, Meng W, Ayata C, Fishman MC, Moskowitz MA (1996) Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J Cereb Blood Flow Metab 16:981–987

    CAS  PubMed  Google Scholar 

  19. Huang PL (1998) Disruption of the endothelial nitric oxide synthase gene: effect on vascular response to injury. Am J Cardiol 82:57S–59S

    Article  CAS  PubMed  Google Scholar 

  20. Ni W, Egashira K, Kataoka C, Kitamoto S, Koyanagi M, Inoue S, Takeshita A (2001) Antiinflammatory and antiarteriosclerotic actions of HMG-CoA reductase inhibitors in a rat model of chronic inhibition of nitric oxide synthesis. Circ Res 89:415–421

    CAS  PubMed  Google Scholar 

  21. LaRosa JC, Hunninghake D, Bush D, Criqui MH, Getz GS, Gotto AM Jr, Grundy SM, Rakita L, Robertson RM, Weisfeldt ML, Cleeman JI (1990) The cholesterol facts. A summary of the evidence relating dietary fats, serum cholesterol, and coronary heart disease. A joint statement by the American Heart Association and the National Heart, Lung and Blood Institute. The Task Force on Cholesterol Issues, American Heart Association. Circulation 81:1721–1733

    PubMed  Google Scholar 

  22. Coresh J, Kwiterovich PO Jr (1996) Small, dense low-density lipoprotein particles and coronary heart disease risk: a clear association with uncertain implications. JAMA 276:914–915

    CAS  PubMed  Google Scholar 

  23. Wood D, De Backer G, Faergeman O, Graham I, Mancia G, Pyörälä K (1998) Prevention of coronary heart disease in clinical practice: recommendations of the second joint task force of European and other societies on coronary prevention. Eur Heart J 19:1434–1503

    PubMed  Google Scholar 

  24. Gotto AM Jr, Kuller LH (2002) Eligibility for lipid-lowering drug therapy in primary prevention: how do the Adult Treatment Panel II and Adult Treatment Panel III guidelines compare? Circulation 105:136–139

    Article  PubMed  Google Scholar 

  25. Istvan ES, Deisenhofer J (2001) Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292:1160–1164

    CAS  PubMed  Google Scholar 

  26. Maron DJ, Fazio S, Linton MF (2000) Current perspectives on statins. Circulation 101:207–213

    CAS  PubMed  Google Scholar 

  27. Olsson AG, Pears J, McKellar J, Mizan J, Raza A (2001) Effect of rosuvastatin on low-density lipoprotein cholesterol in patients with hypercholesterolemia. Am J Cardiol 88:504–508

    CAS  PubMed  Google Scholar 

  28. Scandinavian Simvastatin Survival Study Group (1994) Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 344:1383–1389

    PubMed  Google Scholar 

  29. Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, MacFarlane PW, McKillop JH, Packard CJ, for the West of Scotland Coronary Prevention Study Group (1995) Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med 333:1301–1307

    CAS  PubMed  Google Scholar 

  30. Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, Brown L, Warnica JW, Arnold JM, Wun C-C, Davis BR, Braunwald E (1996) The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med 335:1001–1009

    CAS  PubMed  Google Scholar 

  31. Downs JR, Clearfield M, Weis S, Whitney E, Shapiro DR, Beere PA, Langendorfer A, Stein EA, Kruyer W, Gotto AM Jr (1998) Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA 279:1615–1622

    CAS  PubMed  Google Scholar 

  32. The Long-term Intervention with Pravastatin in Ischemic Disease (LIPID) Study Group (1998) Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med 339:1349–1357

    PubMed  Google Scholar 

  33. Heart Protection Study Collaborative Group (2002) MRC/BHF heart protection study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360:722

    PubMed  Google Scholar 

  34. West of Scotland Coronary Prevention Study Group (1998) Influence of pravastatin and plasma lipids on clinical events in the West of Scotland coronary prevention study (WOSCOPS). Circulation 97:1440–1445

    PubMed  Google Scholar 

  35. Scandinavian Simvastatin Survival Study Group (1995) Baseline serum cholesterol and treatment effect in the Scandinavian simvastatin survival study (4S). Lancet 345:1274–1275

    PubMed  Google Scholar 

  36. Prospective Studies Collaboration (1995) Cholesterol, diastolic blood pressure, and stroke: 13,000 strokes in 450,000 people in 45 prospective cohorts. Lancet 346:1647–1653

    PubMed  Google Scholar 

  37. Pedersen TR, Kjekshus J, Pyörälä K, Olsson AG, Cook TJ, Musliner TA, Tobert JA, Haghfelt T (1998) Effect of simvastatin on ischemic signs and symptoms in the Scandinavian simvastatin survival study (4S). Am J Cardiol 81:333–335

    Article  CAS  PubMed  Google Scholar 

  38. Liao JK (2002) Statins and ischemic stroke. Atherosclerosis Suppl 3:21–25

    Article  CAS  Google Scholar 

  39. Williams JK, Sukhova GK, Herrington DM, Libby P (1998) Pravastatin has cholesterol-lowering independent effects on the artery wall of atherosclerotic monkeys. J Am Coll Cardiol 31:684–691

    Article  CAS  PubMed  Google Scholar 

  40. Havekes LM, van Duyvenvoorde W, Maas MCE, van der Boom H, van den Hoogen CM, Emeis JJ, Princen HMG (2002) Rosuvastatin reduces atherosclerosis independently of its cholesterol-lowering effect in APOE*3 Leiden transgenic mice. Atherosclerosis 3:187

    Article  Google Scholar 

  41. Laufs U, Gertz K, Dirnagl U, Bohm M, Nickenig G, Endres M (2002) Rosuvastatin, a new HMG-CoA reductase inhibitor, upregulates endothelial nitric oxide synthase and protects from ischemic stroke in mice. Brain Res 942:23–30

    Article  CAS  PubMed  Google Scholar 

  42. Endres M, Laufs U, Huang Z, Nakamura T, Huang P, Moskowitz MA, Liao JK (1998) Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 95:8880–8885

    Article  CAS  PubMed  Google Scholar 

  43. Mueck AO, Seeger H, Wallwiener D (2001) Further evidence for direct vascular actions of statins: effect on endothelial nitric oxide synthase and adhesion molecules. Exp Clin Endocrinol Diabetes 109:181–183

    Article  CAS  PubMed  Google Scholar 

  44. Laufs U, Fata VL, Liao JK (1997) Inhibition of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase blocks hypoxia-mediated down-regulation of endothelial nitric oxide synthase. J Biol Chem 272:31725–31729

    Article  CAS  PubMed  Google Scholar 

  45. Yamada M, Huang Z, Dalkara T, Endres M, Laufs U, Waeber C, Huang PL, Liao JK, Moskowitz MA (2000) Endothelial nitric oxide synthase-dependent cerebral blood flow augmentation by L-arginine after chronic statin treatment. J Cereb Blood Flow Metab 20:709–717

    CAS  PubMed  Google Scholar 

  46. Wassmann S, Laufs U, Baumer AT, Muller K, Ahlbory K, Linz W, Itter G, Rosen R, Bohm M, Nickenig G (2001) HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species. Hypertension 37:1450–1457

    CAS  PubMed  Google Scholar 

  47. Kano H, Hayashi T, Sumi D, Esaki T, Asai Y, Thakur NK, Jayachandran M, Iguchi A (1999) A HMG-CoA reductase inhibitor improved regression of atherosclerosis in the rabbit aorta without affecting serum lipid levels: possible relevance of up-regulation of endothelial NO synthase mRNA. Biochem Biophys Res Commun 259:414–419

    Article  CAS  PubMed  Google Scholar 

  48. Mital S, Zhang X, Zhao G, Bernstein RD, Smith CJ, Fulton DL, Sessa WC, Liao JK, Hintze TH (2000) Simvastatin upregulates coronary vascular endothelial nitric oxide production in conscious dogs. Am J Physiol Heart Circ Physiol 279:H2649–H2657

    CAS  PubMed  Google Scholar 

  49. Stalker TJ, Lefer AM, Scalia R (2001) A new HMG-CoA reductase inhibitor, rosuvastatin, exerts anti-inflammatory effects on the microvascular endothelium: the role of mevalonic acid. Br J Pharmacol 133:406–412

    CAS  PubMed  Google Scholar 

  50. Kaesemeyer WH, Caldwell RB, Huang J, Caldwell RW (1999) Pravastatin sodium activates endothelial nitric oxide synthase independent of its cholesterol-lowering actions. J Am Coll Cardiol 33:234–241

    Article  CAS  PubMed  Google Scholar 

  51. Feron O, Dessy C, Desager JP, Balligand JL (2001) Hydroxy-methylglutaryl-coenzyme A reductase inhibition promotes endothelial nitric oxide synthase activation through a decrease in caveolin abundance. Circulation 103:113–118

    CAS  PubMed  Google Scholar 

  52. Scalia R, Stalker TJ, Lefer AM (2001) Mechanisms of the anti-inflammatory action of rosuvastatin, a new HMG-CoA reductase inhibitor. Atherosclerosis Suppl 2:37

    Article  Google Scholar 

  53. Martinez-Gonzalez J, Raposo B, Rodriguez C, Badimon L (2001) 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition prevents endothelial NO synthase downregulation by atherogenic levels of native LDLs: balance between transcriptional and posttranscriptional regulation. Arterioscler Thromb Vasc Biol 21:804–809

    CAS  PubMed  Google Scholar 

  54. Grunler J, Ericsson J, Dallner G (1994) Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Biochim Biophys Acta 1212:259–277

    CAS  PubMed  Google Scholar 

  55. Tamai O, Matsuoka H, Itabe H, Wada Y, Kohno K, Imaizumi T (1997) Single LDL apheresis improves endothelium-dependent vasodilation in hypercholesterolemic humans. Circulation 95:76–82

    CAS  PubMed  Google Scholar 

  56. Mellwig KP, Baller D, Gleichmann U, Moll D, Betker S, Weise R, Notohamiprodjo G (1998) Improvement of coronary vasodilatation capacity through single LDL apheresis. Atherosclerosis 139:173–178

    Article  CAS  PubMed  Google Scholar 

  57. Liao JK, Shin WS, Lee WY, Clark SL (1995) Oxidized low-density lipoprotein decreases the expression of endothelial nitric oxide synthase. J Biol Chem 270:319–324

    Article  CAS  PubMed  Google Scholar 

  58. Vidal F, Colome C, Martinez-Gonzalez J, Badimon L (1998) Atherogenic concentrations of native low-density lipoproteins down-regulate nitric-oxide-synthase mRNA and protein levels in endothelial cells. Eur J Biochem 252:378–384

    CAS  PubMed  Google Scholar 

  59. Hernandez-Perera O, Perez-Sala D, Navarro-Antolin J, Sanchez-Pascuala R, Hernandez G, Diaz C, Lamas S (1998) Effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells. J Clin Invest 101:2711–2719

    CAS  PubMed  Google Scholar 

  60. Laufs U, La Fata V, Plutzky J, Liao JK (1998) Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 97:1129–1135

    CAS  PubMed  Google Scholar 

  61. Everson WV, Smart EJ (2001) Influence of caveolin, cholesterol, and lipoproteins on nitric oxide synthase: implications for vascular disease. Trends Cardiovasc Med 11:246–250

    Article  CAS  PubMed  Google Scholar 

  62. Sessa WC (2001) Can modulation of endothelial nitric oxide synthase explain the vasculoprotective actions of statins? Trends Mol Med 7:189–191

    Article  CAS  PubMed  Google Scholar 

  63. Feron O, Dessy C, Moniotte S, Desager JP, Balligand JL (1999) Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. J Clin Invest 103:897–905

    CAS  PubMed  Google Scholar 

  64. Pelat M, Dessy C, Feron O, Balligand J-L (2002) HMG-CoA reductase inhibition decreases caveolin-1 independently of plasma lipid lowering in heart and blood vessels of apoE (−/−) mice. Int J Clin Pract Suppl 124:4

    Google Scholar 

  65. Uittenbogaard A, Shaul PW, Yuhanna IS, Blair A, Smart EJ (2000) High density lipoprotein prevents oxidized low density lipoprotein-induced inhibition of endothelial nitric-oxide synthase localization and activation in caveolae. J Biol Chem 275:11278–11283

    Article  CAS  PubMed  Google Scholar 

  66. Mehta JL, Li DY, Chen HJ, Joseph J, Romeo F (2001) Inhibition of LOX-1 by statins may relate to upregulation of eNOS. Biochem Biophys Res Commun 289:857–861

    Article  CAS  PubMed  Google Scholar 

  67. Chen H, Ikeda U, Shimpo M, Shimada K (2000) Direct effects of statins on cells primarily involved in atherosclerosis. Hypertens Res 23:187–192

    CAS  PubMed  Google Scholar 

  68. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    CAS  PubMed  Google Scholar 

  69. Laufs U, Liao JK (2000) Direct vascular effects of HMG-CoA reductase inhibitors. Trends Cardiovasc Med 10:143–148

    Article  CAS  PubMed  Google Scholar 

  70. Laufs U, Liao JK (2000) Targeting Rho in cardiovascular disease. Circ Res 87:526–528

    CAS  PubMed  Google Scholar 

  71. Takemoto M, Sun J, Hiroki J, Shimokawa H, Liao JK (2002) Rho-kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase. Circulation 106:57–62

    Article  CAS  PubMed  Google Scholar 

  72. Laufs U, Liao JK (1998) Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem 273:24266–24271

    CAS  PubMed  Google Scholar 

  73. Laufs U, Endres M, Custodis F, Gertz K, Nickenig G, Liao JK, Böhm M (2000) Suppression of endothelial nitric oxide production after withdrawal of statin treatment is mediated by negative feedback regulation of Rho GTPase gene transcription. Circulation 102:3104–3110

    CAS  PubMed  Google Scholar 

  74. Wang HD, Pagano PJ, Du YT, Cayatte AJ, Quinn MT, Brecher P, Cohen RA (1998) Superoxide anion from the adventitia of the rat thoracic aorta inactivates nitric oxide. Circ Res 82:810–818

    CAS  PubMed  Google Scholar 

  75. Darley-Usmar VM, Hogg N, O'Leary VJ, Wilson MT, Moncada S (1992) The simultaneous generation of superoxide and nitric oxide can initiate lipid peroxidation in human low density lipoprotein. Free Radic Res Commun 17:920

    Google Scholar 

  76. Nickenig G, Harrison DG (2002) The AT(1)-type angiotensin receptor in oxidative stress and atherogenesis. Part I: oxidative stress and atherogenesis. Circulation 105:393–396

    Article  CAS  PubMed  Google Scholar 

  77. Gryglewski RJ, Palmer RM, Moncada S (1986). Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320:454–456

    CAS  PubMed  Google Scholar 

  78. Hogg N, Darley-Usmar VM, Graham A, Moncada S (1993) Peroxynitrite and atherosclerosis. Biochem Soc Trans 21:358–362

    CAS  PubMed  Google Scholar 

  79. Chin JH, Azhar S, Hoffman BB (1992) Inactivation of endothelial-derived relaxing factor by oxidized lipoproteins. J Clin Invest 89:10–18

    CAS  PubMed  Google Scholar 

  80. Kojda G, Harrison D (1999) Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc Res 43:562–571

    CAS  PubMed  Google Scholar 

  81. Xia Y, Dawson VL, Dawson TM, Snyder SH, Zweier JL (1996) Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc Natl Acad Sci U S A 93:6770–6774

    Article  CAS  PubMed  Google Scholar 

  82. Stuehr D, Pou S, Rosen GM (2001) Oxygen reduction by nitric oxide synthases. J Biol Chem 276:14533–14536

    Article  CAS  PubMed  Google Scholar 

  83. Hattori Y, Nakanishi N, Kasai K (2002) Statin enhances cytokine-mediated induction of nitric oxide synthesis in vascular smooth muscle cells. Cardiovasc Res 54:649–658

    Article  CAS  PubMed  Google Scholar 

  84. Wagner AH, Kohler T, Ruckschloss U, Just I, Hecker M (2000) Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler Thromb Vasc Biol 20:61–69

    CAS  PubMed  Google Scholar 

  85. Wassman S, Laufs U, Muller K, Konkol C, Ahlbory K, Baumer AT, Linz W, Bohm M, Nickenig G (2002) Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vasc Biol 22:300–305

    Article  PubMed  Google Scholar 

  86. Sumi D, Hayashi T, Thankur NK, Jayachandran M, Asai Y, Kano H, Matsui H, Iguchi A (2001) A HMG-CoA reductase inhibitor possesses a potent anti-atherosclerotic effect other than serum lipid lowering effects the relevance of endothelial nitric oxide synthase and superoxide anion scavenging action. Atherosclerosis 155:347–357

    Article  CAS  PubMed  Google Scholar 

  87. Heart Protection Study Collaborative Group (2002) MRC/BHF heart protection study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360:23–33

    Article  PubMed  Google Scholar 

  88. Brown BG, Zhao X-Q, Chait A, Fisher LD, Cheung MC, Morse JS, Dowdy AA, Marino EK, Bolson EL, Alaupovic P, Frohlich J, Albers JJ (2001) Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N Engl J Med 345:1583–1592

    Article  CAS  PubMed  Google Scholar 

  89. Neunteufl T, Kostner K, Katzenschlager R, Zehetgruber M, Maurer G, Weidinger F (1998) Additional benefit of vitamin E supplementation to simvastatin therapy on vasoreactivity of the brachial artery of hypercholesterolemic men. J Am Coll Cardiol 32:711–716

    Article  CAS  PubMed  Google Scholar 

  90. Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer DJ, Sessa WC, Walsh K (2000) The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med 6:1004–1010

    Article  CAS  PubMed  Google Scholar 

  91. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605

    CAS  PubMed  Google Scholar 

  92. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399:597–601

    CAS  PubMed  Google Scholar 

  93. Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Alder K, Tiemann M, Rutten H, Fichtlscherer S, Martin H, Zeiher AM (2001) HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 108:391–397

    Article  CAS  PubMed  Google Scholar 

  94. Garcia-Cardena G, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A, Sessa WC (1998) Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392:821–824

    Article  CAS  PubMed  Google Scholar 

  95. Brouet A, Sonveaux P, Dessy C, Moniotte S, Balligand JL, Feron O (2001) Hsp90 and caveolin are key targets for the proangiogenic nitric oxide-mediated effects of statins. Circ Res 89:866–873

    CAS  PubMed  Google Scholar 

  96. Anderson TJ, Meredith IT, Yeung AC, Frei B, Selwyn AP, Ganz P (1995) The effect of cholesterol-lowering and antioxidant therapy on endothelium-dependent coronary vasomotion. N Engl J Med 332:488–493

    CAS  PubMed  Google Scholar 

  97. John S, Delles C, Jacobi J, Schlaich MP, Schneider M, Schmitz G, Schmieder RE (2001) Rapid improvement of nitric oxide bioavailability after lipid-lowering therapy with cerivastatin within two weeks. J Am Coll Cardiol 37:1351–1358

    Article  CAS  PubMed  Google Scholar 

  98. O'Driscoll G, Green D, Taylor RR (1997) Simvastatin, an HMG-coenzyme A reductase inhibitor, improves endothelial function within 1 month. Circulation 95:1126–1131

    CAS  PubMed  Google Scholar 

  99. Tsunekawa T, Hayashi T, Kano H, Sumi D, Matsui-Hirai H, Thakur NK, Egashira K, Iguchi A (2001) Cerivastatin, a hydroxymethylglutaryl coenzyme a reductase inhibitor, improves endothelial function in elderly diabetic patients within 3 days. Circulation 104:376–379

    CAS  PubMed  Google Scholar 

  100. Heeschen C, Hamm CW, Laufs U, Snapinn S, Böhm M, White HD, Platelet and Receptor Inhibition in Ischaemic Syndrome Management (PRISM) Investigators (2002) Withdrawal of statins increases event rates in patients with acute coronary syndromes. Circulation 105:1446–1452

    CAS  PubMed  Google Scholar 

  101. Aengevaeren WR (1999) Beyond lipids the role of the endothelium in coronary artery disease. Atherosclerosis 147[Suppl 1]:S11–S16

    Google Scholar 

  102. Fukumoto Y, Libby P, Rabkin E, Hill CC, Enomoto M, Hirouchi Y, Shiomi M, Aikawa M (2001) Statins alter smooth muscle cell accumulation and collagen content in established atheroma of Watanabe heritable hyperlipidemic rabbits. Circulation 103:993–999

    CAS  PubMed  Google Scholar 

  103. Martinez-Gonzalez J, Alfon J, Berrozpe M, Badimon L (2001) HMG-CoA reductase inhibitors reduce vascular monocyte chemotactic protein-1 expression in early lesions from hypercholesterolemic swine independently of their effect on plasma cholesterol levels. Atherosclerosis 159:27–33

    Article  CAS  PubMed  Google Scholar 

  104. Corsini A, Bellosta S, Baetta R, Fumagalli R, Paoletti R, Bernini F (1999) New insights into the pharmacodynamic and pharmacokinetic properties of statins. Pharmacol Ther 84:413–428

    CAS  PubMed  Google Scholar 

  105. Laufs U, Gertz K, Huang P, Nickenig G, Bohm M, Dirnagl U, Endres M (2000) Atorvastatin upregulates type III nitric oxide synthase in thrombocytes, decreases platelet activation, and protects from cerebral ischemia in normocholesterolemic mice. Stroke 31:2442–2449

    CAS  PubMed  Google Scholar 

  106. Sata M, Nishimatsu H, Suzuki E, Sugiura S, Yoshizumi M, Ouchi Y, Hirata Y, Nagai R (2001) Endothelial nitric oxide synthase is essential for the HMG-CoA reductase inhibitor cerivastatin to promote collateral growth in response to ischemia. FASEB J 15:2530–2532

    CAS  PubMed  Google Scholar 

  107. Li W, Asagami T, McTaggart F, Tsao PS (2002) Rosuvastatin diminishes myocardial injury after ischemia/reperfusion. Int J Clin Pract Suppl 124:6

    Google Scholar 

  108. John S, Schlaich M, Langenfeld M, Weihprecht H, Schmitz G, Weidinger G, Schmieder RE (1998) Increased bioavailability of nitric oxide after lipid-lowering therapy in hypercholesterolemic patients: a randomized, placebo-controlled, double-blind study. Circulation 98:211–216

    CAS  PubMed  Google Scholar 

  109. Lefer AM, Scalia R, Lefer DJ (2001) Vascular effects of HMG CoA-reductase inhibitors (statins) unrelated to cholesterol lowering: new concepts for cardiovascular disease. Cardiovasc Res 49:281–287

    Article  CAS  PubMed  Google Scholar 

  110. Masumoto A, Hirooka Y, Hironaga K, Eshima K, Setoguchi S, Egashira K, Takeshita A (2001) Effect of pravastatin on endothelial function in patients with coronary artery disease (cholesterol-independent effect of pravastatin). Am J Cardiol 88:1291–1294

    Article  CAS  PubMed  Google Scholar 

  111. Laufs U, Wassmann S, Hilgers S, Ribaudo N, Bohm M, Nickenig G (2001) Rapid effects on vascular function after initiation and withdrawal of atorvastatin in healthy, normocholesterolemic men. Am J Cardiol 88:1306–1307

    Article  CAS  PubMed  Google Scholar 

  112. Sukhova GK, Williams JK, Libby P (2002) Statins reduce inflammation in atheroma of nonhuman primates independent of effects on serum cholesterol. Arterioscler Thromb Vasc Biol 22:1452–1458

    Article  CAS  PubMed  Google Scholar 

  113. Preik M, Kelm M, Schoebel F, Schottenfeld Y, Leschke M, Strauer BE (1996) Selective impairment of nitric oxide dependent vasodilation in young adults with hypercholesterolaemia. J Cardiovasc Risk 3:465–471

    CAS  PubMed  Google Scholar 

  114. Quyyumi AA, Dakak N, Andrews NP, Gilligan DM, Panza JA, Cannon RO III (1995) Contribution of nitric oxide to metabolic coronary vasodilation in the human heart. Circulation 92:320–326

    CAS  PubMed  Google Scholar 

  115. Boger RH, Bode-Boger SM, Thiele W, Creutzig A, Alexander K, Frolich JC (1998) Restoring vascular nitric oxide formation by L-arginine improves the symptoms of intermittent claudication in patients with peripheral arterial occlusive disease. J Am Coll Cardiol 32:1336–1344

    PubMed  Google Scholar 

  116. McTaggart F, Buckett L, Davidson R, Holdgate G, McCormick A, Schneck R, Smith G, Warwick M (2001) Preclinical and clinical pharmacology of rosuvastatin, a new 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. Am J Cardiol 87 [Suppl]:28B–32B

  117. Hanefield M (2001) Clinical rationale for rosuvastatin, a potent new HMG-CoA reductase inhibitor. Int J Clin Pract 55:399–405

    PubMed  Google Scholar 

  118. Knopp RH (1999) Drug treatment of lipid disorders. N Engl J Med 341:498–511

    Article  CAS  PubMed  Google Scholar 

  119. Buckett L, Ballard P, Davidson R, Dunkley C, Martin L, Stafford J, McTaggart F (2000) Selectivity of ZD4522 for inhibition of cholesterol synthesis in hepatic versus non-hepatic cells. Atherosclerosis 151:41

    Article  Google Scholar 

  120. Dobrucki LW, Kalinowski L, Dobrucki IT, Malinski T (2001) Statin-stimulated nitric oxide release from endothelium. Med Sci Monit 7:622–627

    CAS  PubMed  Google Scholar 

  121. Griendling KK, Harrison DG (2001) Out, damned dot: studies of the NADPH oxidase in atherosclerosis. J Clin Invest 108:1423–1424

    Article  CAS  PubMed  Google Scholar 

  122. Heitzer T, Schlinzig T, Krohn K, Meinertz T, Münzel T (2001) Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 104:2673–2678

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to G. Allcock for editorial assistance in the preparation of this manuscript. U.L. received financial support from and has been a speaker for AstraZeneca, Bayer, MSD, Novartis, Pfizer and Sankyo. U.L.'s research was supported by the Deutsche Forschungsgemeinschaft and the Universität des Saarlandes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Laufs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laufs, U. Beyond lipid-lowering: effects of statins on endothelial nitric oxide. Eur J Clin Pharmacol 58, 719–731 (2003). https://doi.org/10.1007/s00228-002-0556-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-002-0556-0

Keywords

Navigation