Skip to main content

Advertisement

Log in

Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

The frequency of functionally important mutations and alleles of genes coding for xenobiotic metabolizing enzymes shows a wide ethnic variation. However, little is known of the frequency distribution of the major allelic variants in the Russian population.

Methods

Using polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) genotyping assays and the real-time PCR with fluorescent probes, the frequencies of functionally important variants of the cytochromes P 450 (CYP) 2C9, 2C19, 2D6, 1A1 as well as arylamine N-acetyltransferase 2 (NAT2) and P-glycoprotein (MDR1) were determined in a sample of 290 Russian volunteers derived from Voronezh area.

Results

CYP2C9*2 and *3 alleles were found with allelic frequencies of 10.5% and 6.7%, respectively. The novel intron-2 T>C mutation at exon 2 +73 bp occurred in 24.8% of alleles. CYP2C19*2 and *3 alleles occurred in 11.4% and 0.3%, respectively. Six persons (2.1%) carried two of these CYP2C19 alleles responsible for poor metabolizing activity. Of all subjects, 5.9% were CYP2D6 poor metabolizers, whereas 3.4% were addressed to ultra-rapid metabolizers (CYP2D6*1×2/*1). The CYP1A1*2A allele was found in 4.7%, *2B in 5.0%, *4 in 2.6%, and the 5′-mutations −3219C>T, −3229G>A, and the novel −4335G>A in 6.0%, 2.9% and 26.0% of alleles, respectively. Genotyping of eight different single nucleotide polymorphisms in the NAT2 gene provided in 58.0% a genotype associated with slow acetylation. The MDR1 triple variants G2677T and G2677A in exon 21 had an allelic frequency of 41.9% and 3.3%, respectively, and the variant C3435T in exon 26 one of 54.3%. Frequencies of functionally important haplotypes were calculated.

Conclusion

The overview of allele distribution of important xenobiotic-metabolizing enzymes among a Russian population shows similarity to other Caucasians. The data will be useful for clinical pharmacokinetic investigations and for drug dosage recommendations in the Russian population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Meisel C, Roots I, Cascorbi I, Brinkmann U, Brockmöller J (2000) How to manage individualized drug therapy: application of pharmacogenetic knowledge of drug metabolism and transport. Clin Chem Lab Med 38:869–876

    CAS  PubMed  Google Scholar 

  2. Nebert DW (2000) Drug-metabolizing enzymes, polymorphisms and interindividual response to environmental toxicants. Clin Chem Lab Med 38:857–861

    CAS  PubMed  Google Scholar 

  3. Sachse C, Brockmöller J, Bauer S, Roots I (1997) Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 60:284–295

    Google Scholar 

  4. Dahl ML, Johansson I, Bertilsson L, Ingelman Sundberg M, Sjöqvist F (1995) Ultrarapid hydroxylation of debrisoquine in a Swedish population. Analysis of the molecular genetic basis. J Pharmacol Exp Ther 274:516–520

    CAS  PubMed  Google Scholar 

  5. Aklillu E, Persson I, Bertilsson L, Johansson I, Rodrigues F, Ingelman-Sundberg M (1996) Frequent distribution of ultrarapid metabolizers of debrisoquine in an ethiopian population carrying duplicated and multiduplicated functional CYP2D6 alleles. J Pharmacol Exp Ther 278:441–446

    Google Scholar 

  6. Aynacioglu AS, Sachse C, Bozkurt A, Kortunay S, Nacak M, Schroder T, Kayaalp SO, Roots I, Brockmöller J (1999) Low frequency of defective alleles of cytochrome P450 enzymes 2C19 and 2D6 in the Turkish population. Clin Pharmacol Ther 66:185–192

    CAS  PubMed  Google Scholar 

  7. McLellan RA, Oscarson M, Seidegard J, Evans DA, Ingelman-Sundberg M (1997) Frequent occurrence of CYP2D6 gene duplication in Saudi Arabians. Pharmacogenetics 7:187–191

    CAS  PubMed  Google Scholar 

  8. Aynacioglu AS, Brockmöller J, Bauer S, Sachse C, Guzelbey P, Ongen Z, Nacak M, Roots I (1999) Frequency of cytochrome P450 CYP2C9 variants in a Turkish population and functional relevance for phenytoin. Br J Clin Pharmacol 48:409–415

    CAS  PubMed  Google Scholar 

  9. Kimura M, Ieiri I, Mamiya K, Urae A, Higuchi S (1998) Genetic polymorphism of cytochrome P450 s, CYP2C19, and CYP2C9 in a Japanese population. Ther Drug Monit 20:243–247

    CAS  PubMed  Google Scholar 

  10. Wang SL, Huang J, Lai MD, Tsai JJ (1995) Detection of CYP2C9 polymorphism based on the polymerase chain reaction in Chinese. Pharmacogenetics 5:37–42

    CAS  PubMed  Google Scholar 

  11. Xie HG, Stein CM, Kim RB, Wilkinson GR, Flockhart DA, Wood AJ (1999) Allelic, genotypic and phenotypic distributions of S-mephenytoin 4'-hydroxylase (CYP2C19) in healthy Caucasian populations of European descent throughout the world. Pharmacogenetics 9:539–549

    CAS  PubMed  Google Scholar 

  12. Cascorbi I, Brockmöller J, Roots I (1996) A C4887A polymorphism in exon 7 of human CYP1A1: population frequency, mutation linkages, and impact on lung cancer susceptibility. Cancer Res 56:4965–4969

    CAS  PubMed  Google Scholar 

  13. Mrozikiewicz PM, Cascorbi I, Brockmöller J, Roots I (1997) CYP1A1 mutations 4887A, 4889G, 5639C and 6235C in the Polish population and their allelic linkage, determined by peptide nucleic acid-mediated PCR clamping. Pharmacogenetics 7:303–307

    CAS  PubMed  Google Scholar 

  14. Inoue K, Asao T, Shimada T (2000) Ethnic-related differences in the frequency distribution of genetic polymorphisms in the CYP1A1 and CYP1B1 genes in Japanese and Caucasian populations. Xenobiotica 30:285–295

    CAS  PubMed  Google Scholar 

  15. Cascorbi I, Drakoulis N, Brockmöller J, Maurer A, Sperling K, Roots I (1995) Arylamine N-acetyltransferase (NAT2) mutations and their allelic linkage in unrelated Caucasian individuals: correlation with phenotypic activity. Am J Hum Genet 57:581–592

    Google Scholar 

  16. Mrozikiewicz PM, Cascorbi I, Brockmöller J, Roots I (1996) Determination and allelic allocation of seven nucleotide transitions within the arylamine N-acetyltransferase gene in the Polish population. Clin Pharmacol Ther 59:376–382

    CAS  PubMed  Google Scholar 

  17. Aynacioglu AS, Cascorbi I, Mrozikiewicz PM, Roots I (1997) Arylamine N-acetyltransferase (NAT2) genotypes in a Turkish population. Pharmacogenetics 7:327–331

    PubMed  Google Scholar 

  18. Lee EJ, Zhao B, Seow-Choen F (1998) Relationship between polymorphism of N-acetyltransferase gene and susceptibility to colorectal carcinoma in a Chinese population. Pharmacogenetics 8:513–517

    CAS  PubMed  Google Scholar 

  19. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmöller J, Johne A, Cascorbi I, Gerloff T, Roots I, Eichelbaum M, Brinkmann U (2000) Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 97:3473–3478

    CAS  PubMed  Google Scholar 

  20. Cascorbi I, Gerloff T, Johne A, Meisel C, Hoffmeyer S, Schwab M, Schaeffeler E, Eichelbaum M, Brinkmann U, Roots I (2001) Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin Pharmacol Ther 69:169–174

    Article  CAS  PubMed  Google Scholar 

  21. Johne A, Kopke K, Gerloff T, Mai I, Rietbrock S, Meisel C, Hoffmeyer S, Kerb R, Fromm MF, Brinkmann U, Eichelbaum M, Brockmoller J, Cascorbi I, Roots I (2002) Modulation of steady-state kinetics of digoxin by haplotypes of the P-glycoprotein MDR1 gene. Clin Pharmacol Ther 72:584–594

    Article  CAS  PubMed  Google Scholar 

  22. Schaeffeler E, Eichelbaum M, Brinkmann U, Penger A, Asante-Poku S, Zanger UM, Schwab M (2001) Frequency of C3435T polymorphism of MDR1 gene in African people. Lancet 358:383–384

    Article  CAS  PubMed  Google Scholar 

  23. Ito S, Ieiri I, Tanabe M, Suzuki A, Higuchi S, Otsubo K (2001) Polymorphism of the ABC transporter genes, MDR1, MRP1 and MRP2/cMOAT, in healthy Japanese subjects. Pharmacogenetics 11:175–184

    Article  CAS  PubMed  Google Scholar 

  24. Ameyaw MM, Regateiro F, Li T, Liu X, Tariq M, Mobarek A, Thornton N, Folayan GO, Githang'a J, Indalo A, Ofori-Adjei D, Price-Evans DA, McLeod HL (2001) MDR1 pharmacogenetics: frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity. Pharmacogenetics 11:217–221

    Article  CAS  PubMed  Google Scholar 

  25. Marandi T, Dahl ML, Rago L, Kiivet R, Sjöqvist F (1997) Debrisoquine and S-mephenytoin hydroxylation polymorphisms in a Russian population living in Estonia. Eur J Clin Pharmacol 53:257–260

    CAS  PubMed  Google Scholar 

  26. Duzhak T, Mitrofanov D, Ostashevskii V, Gutkina N, Chasovnikova O, Posukh O, Osipova L, Lyakhovich VV (2000) Genetic polymorphisms of CYP2D6, CYP1A1, GSTM1 and p53 genes in a unique Siberian population of Tundra Nentsi. Pharmacogenetics 10:531–537

    Article  CAS  PubMed  Google Scholar 

  27. Cascorbi I, Ackermann E, Sachse C, Brockmöller J, Roots I (1998) A novel CYP2C9 intron 2 T/C transition and linkage to mutations Leu359 and Cys144 (abstract). Clin Pharmacol Ther 63:198

    Google Scholar 

  28. de Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA (1994) The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 269:15419–15422

    PubMed  Google Scholar 

  29. Borlak J, Thum T (2002) Identification of major CYP2C9 and CYP2C19 polymorphisms by fluorescence resonance energy transfer analysis. Clin Chem 48:1592–1594

    CAS  PubMed  Google Scholar 

  30. Smart J, Daly AK (2000) Variation in induced CYP1A1 levels: relationship to CYP1A1, Ah receptor and GSTM1 polymorphisms. Pharmacogenetics 10:11–24

    Article  CAS  PubMed  Google Scholar 

  31. Leff MA, Fretland AJ, Doll MA, Hein DW (1999) Novel human N-acetyltransferase 2 alleles that differ in mechanism for slow acetylator phenotype. J Biol Chem 274:34519–34522

    Article  CAS  PubMed  Google Scholar 

  32. Hein D (2002) Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis. Mutat Res 65:506–507

    Google Scholar 

  33. Blömeke B, Sieben S, Spotter D, Landt O, Merk HF (1999) Identification of N-acetyltransferase 2 genotypes by continuous monitoring of fluorogenic hybridization probes. Anal Biochem 275:93–97

    Article  CAS  PubMed  Google Scholar 

  34. Oselin K, Gerloff T, Mrozikiewicz PM, Pähkla R, Roots I (2003) MDR1 polymorphisms G2677T in exon 21 and C3435T in exon 26 fail to affect rhodamine 123 efflux in peripheral blood lymphocytes. Fundam Clin Pharmacol 17:1–7

    Article  PubMed  Google Scholar 

  35. Rohde K, Fuerst R (2001) Haplotyping and estimation of haplotype frequencies for closely linked biallelic multilocus genetic phenotypes including nuclear family information. Hum Mutat 17:289–295

    Article  CAS  PubMed  Google Scholar 

  36. Cascorbi I, Brockmöller J, Bauer S, Reum T, Roots I (1996) NAT2*12A (803A→G) codes for rapid arylamine N-acetylation in humans. Pharmacogenetics 6:257–259

    CAS  PubMed  Google Scholar 

  37. Aithal GP, Day CP, Kesteven PJ, Daly AK (1999) Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 353:717–719

    CAS  PubMed  Google Scholar 

  38. Kirchheiner J, Bauer S, Meineke I, Rohde W, Prang V, Meisel C, Roots I, Brockmöller J (2002) Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and the insulin and glucose response in healthy volunteers. Pharmacogenetics 12:101–109

    Article  CAS  PubMed  Google Scholar 

  39. Kirchheiner J, Meineke I, Freytag G, Meisel C, Roots I, Brockmöller J (2002) Enantiospecific effects of cytochrome P450 2C9 amino acid variants on ibuprofen pharmacokinetics and on the inhibition of cyclooxygenases 1 and 2. Clin Pharmacol Ther 72:62–75

    Article  CAS  PubMed  Google Scholar 

  40. Miners JO, Birkett DJ (1998) Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 45:525–538

    Article  CAS  PubMed  Google Scholar 

  41. Lee CR, Goldstein JA, Pieper JA (2002) Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics 12:251–263

    Article  CAS  PubMed  Google Scholar 

  42. Yasar U, Eliasson E, Dahl ML, Johansson I, Ingelman-Sundberg M, Sjoqvist F (1999) Validation of methods for CYP2C9 genotyping: frequencies of mutant alleles in a Swedish population. Biochem Biophys Res Commun 254:628–631

    CAS  PubMed  Google Scholar 

  43. Rost KL, Roots I (1996) Nonlinear kinetics after high-dose omeprazole caused by saturation of genetically variable CYP2C19. Hepatology 23:1491–1497

    CAS  PubMed  Google Scholar 

  44. Bathum L, Skjelbo E, Mutabingwa TK, Madsen H, Horder M, Brøsen K (1999) Phenotypes and genotypes for CYP2D6 and CYP2C19 in a black Tanzanian population. Br J Clin Pharmacol 48:395–401

    CAS  PubMed  Google Scholar 

  45. Xie HG (2000) Genetic variations of S-mephenytoin 4'-hydroxylase (CYP2C19) in the Chinese population. Life Sci 66:L175–L181

    Article  Google Scholar 

  46. Griese EU, Zanger UM, Brudermanns U, Gaedigk A, Mikus G, Mörike K, Stuven T, Eichelbaum M (1998) Assessment of the predictive power of genotypes for the in-vivo catalytic function of CYP2D6 in a German population. Pharmacogenetics 8:15–26

    CAS  PubMed  Google Scholar 

  47. Schwarz D, Kisselev P, Cascorbi I, Schunck WH, Roots I (2001) Differential metabolism of benzo[a]pyrene and benzo[a]pyrene-7,8-dihydrodiol by human CYP1A1 variants. Carcinogenesis 22:453–459

    Article  CAS  PubMed  Google Scholar 

  48. Houlston RS (2000) CYP1A1 polymorphisms and lung cancer risk: a meta-analysis. Pharmacogenetics 10:105–114

    Article  CAS  PubMed  Google Scholar 

  49. Cascorbi I, Brockmöller J, Mrozikiewicz PM, Müller A, Roots I (1999) Arylamine N-acetyltransferase activity in man. Drug Metab Rev 31:489–502

    Article  CAS  PubMed  Google Scholar 

  50. Okumura K, Kita T, Chikazawa S, Komada F, Iwakawa S, Tanigawara Y (1997) Genotyping of N-acetylation polymorphism and correlation with procainamide metabolism. Clin Pharmacol Ther 61:509–517

    CAS  PubMed  Google Scholar 

  51. Kim RB, Leake BF, Choo EF, Dresser GK, Kubba SV, Schwarz UI, Taylor A, Xie HG, McKinsey J, Zhou S, Lan LB, Schuetz JD, Schuetz EG, Wilkinson GR (2001) Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 70:189–199

    Google Scholar 

Download references

Acknowledgements

We thank M. Buchneva, Voronezh, for collection of blood samples. The help of O. Landt (Tib Molbiol) in hybridization probes design is gratefully acknowledged. We appreciate critical reading of the manuscript by Dr. G. Laschinski and Dr. J. Kirchheiner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena A. Gaikovitch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaikovitch, E.A., Cascorbi, I., Mrozikiewicz, P.M. et al. Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population. Eur J Clin Pharmacol 59, 303–312 (2003). https://doi.org/10.1007/s00228-003-0606-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-003-0606-2

Keywords

Navigation