Skip to main content
Log in

Flip-flop kinetics of ropivacaine during continuous epidural infusion influences its accumulation rate

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Background

Ropivacaine has an optimal toxicity profile for epidural anesthesia in adults, but there are currently no studies concerning its pharmacokinetics during continuous infusion. The primary objective of this study was to evaluate the pharmacokinetics and safety of ropivacaine in adults during a 48-h continuous epidural infusion.

Materials and methods

We enrolled 43 adults (ASA I-II) scheduled for major abdominal or urologic surgery with postoperative continuous epidural analgesia with ropivacaine 0.2% (5 mL/h) and sufentanil 0.75 μg/mL for 48 h. Ropivacaine blood samples were collected during continuous epidural infusion before the bolus and 3, 6, 12, 24, 48, 54, 60 h after the bolus; plasma concentrations were measured on HPLC-UV. The concentration-time relationship of ropivacaine levels was analyzed using a population pharmacokinetic method based on a mixed-effect-model approach (P-PHARM software).

Results

Mean plasma concentration of ropivacaine at the end of epidural infusion (C48h) was 1.69 μg/mL (0.21–3.8 μg/mL). Mean (range) Cmax was 1.82 μg/mL (0.61–4.0 μg/mL); the area under the plasma concentration curve, AUC (0-60), was 67.48 ± 30.60 μg·h/mL. Total plasma ropivacaine concentrations fell mainly within (84%) or below (12%) the range reported to be safe in adults (1.0–3.0 μg/mL). Only two patients (5%) reached ropivacaine plasma levels higher than 3 μg/mL, namely 3.8 and 4.0 μg/mL at 48 and 54 h, respectively. Total ropivacaine concentrations up to 4.0 μg/mL were tolerated during long-term epidural ropivacaine infusion. Mean clearance for total ropivacaine was 5.33 L/h. Age was the only covariable to significantly reduce clearance variability: CL (L/h) = 15.04 − 0.148 × age (years). The volume of distribution (Vd) was 92.15 L. The infusion dosing period half-life (t1/2,DP = 0.693 × Vd/CL) was 10.8 h.

Conclusions

Exposure to ropivacaine during epidural infusion is highly variable. The apparent infusion dosing half-life t1/2,DP is the most appropriate parameter to predict drug accumulation upon epidural infusion since it appears to better reflect the interplay interference between volume distribution and absorption rate during the accumulation phase. Prediction of ropivacaine accumulation can be improved by considering patient age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. McClellan KJ, Faulds D (2000) Ropivacaine: an update of its use in regional anaesthesia. Drugs 60:1065–1093

    Article  PubMed  CAS  Google Scholar 

  2. Allegri M, Delazzo MG, Grossi P, Borghi B (2009) Efficacy of drugs in regional anesthesia: a review. Eur J Pain 3(2):41–48

    CAS  Google Scholar 

  3. Mather LE, Chang DH (2001) Cardiotoxicity with modern local anaesthetics: is there a safer choice? Drugs 61:333–342

    Article  PubMed  CAS  Google Scholar 

  4. Groban L, Deal DD, Vernon JC, James RL, Butterworth J (2001) Cardiac resuscitation after incremental overdosage with lidocaine, bupivacaine, and ropivacaine in anesthetized dogs. Anesth Analg 92:37–43

    Article  PubMed  CAS  Google Scholar 

  5. Knudsen K, Beckmann Suurkula M, Blomberg S, Sjövall J, Edvardsson N (1997) Central nervous and cardiovascular effects of i.v. infusions of ropivacaine, bupivacaine and placebo in volunteers. Br J Anaesth 78:507–514

    PubMed  CAS  Google Scholar 

  6. Scott DB, Lee A, Fagan D, Bowler GMR, Bloomfield P, Lundh R (1989) Acute toxicity of ropivacaine compared with that of bupivacaine. Anesth Analg 69:563–569

    PubMed  CAS  Google Scholar 

  7. Jokinen MJ (2005) The pharmacokinetics of ropivacaine in hepatic and renal insufficiency. Best Pract Res Clin Anaesthesiol 19(2):269–274

    Article  PubMed  CAS  Google Scholar 

  8. Erichsen CJ, Sjovall J, Kehlet H, Hedlund C, Arvidsson T (1996) Pharmacokinetics and analgesic effect of ropivacaine during continous epidural infusion for postoperative pain relief. Anesthesiology 84(4):834–842

    Article  PubMed  CAS  Google Scholar 

  9. Lee A, Fagan D, Lamont M, Tucker GT, Halldin M, Scott DB (1989) Disposition kinetics of ropivacaine in humans. Anesth Analg 69:736–738

    Article  PubMed  CAS  Google Scholar 

  10. Emanuelsson B-MK, Persson J, Alm C, Heller A, Gustafsson LL (1997) Systemic absorption and block after epidural injection of ropivacaine in healthy volunteers. Anesthesiology 87:1309–1317

    Article  PubMed  CAS  Google Scholar 

  11. SIMED (1994) P-PHARM user’s guide. SIMED, Creteil, France

  12. Mentre F, Mallet A (1994) Handling covariates in population pharmacokinetics. Int J Biomed Comput 36:25–33

    Article  PubMed  CAS  Google Scholar 

  13. Morton CPJ, Bloomfield S, Magnusson A, Jozwiak A, McClure JH (1997) Ropivacaine 0.75% for extradural anaesthesia in elective caesarean section: an open clinical and pharmacokinetic study in mother and neonate. Br J Anaesth 79(1):3–8

    PubMed  CAS  Google Scholar 

  14. Emanuelsson B-MK, Persson J, Sandin S, Alm C, Gustafsson LL (1997) Intraindividual and interindividual variability in the disposition of the local anesthetic ropivacaine in healthy subjects. Therap Drug Monit 19:126–131

    Article  CAS  Google Scholar 

  15. Hansen TG, Ilett KF, Lim SI, Reid C, Hackett LP, Bergesio (2000) Pharmacokinetics and clinical efficacy of long-term epidural ropivacaine infusion in children. Br J Anaesth 85:347–353

    PubMed  CAS  Google Scholar 

  16. Emanuelsson B-MK, Zaric D, Nydahl PA, Axelsson K (1995) Pharmacokinetics of ropivacaine and bupivacaine during 21 hours of continous epidural infusion in healthy male volunteers. Anesth Analg 81:1163–1168

    Article  PubMed  CAS  Google Scholar 

  17. Halldin MM, Bredberg E, Angelin B, Arvidsson T, Askemark Y, Elofsson S, Widman M (1996) Metabolism and excretion of ropivacaine in humans. Drug Metab Dispos 24:962–968

    PubMed  CAS  Google Scholar 

  18. Helton SH, Denson DD (1990) Pharmacodynamics and pharmacokinetics of epidural ropivacaine in humans. Anesth Analg 70:16–21

    Article  PubMed  Google Scholar 

  19. PharmPK Discussion Group (2006) Steady state and long half-life. PharmPK discussion list archive. http://www.boomer.org/pkin/PK06/PK2006542.html

  20. Habre W, Bergesio R, Johnson C, Hackett P, Joyce D, Sims C (2000) Pharmacokinetics of ropivacaine following caudal analgesia in children. Paediatr Anaesth 10:143–147

    Article  PubMed  CAS  Google Scholar 

  21. Sahin S, Benet LZ (2008) The operational multiple dosing half-life: a key to defining drug accumulation in patients and to designing extended release dosage forms. Pharm Res 25(12):2869–2877

    Article  PubMed  CAS  Google Scholar 

  22. Nicòlas J, Oltra D, Navarro-Fontestad C, Nicòlas N, Ramìrez F, Alòs M, Casabo VG (2009) Population pharmacokinetics of ropivacaine and bupivacaine after loco-regional administration as anesthetic in hip or knee replacement surgery. Abstracts Ann Mtg Pop Approach Group Eur 2009:abstr 1571

  23. Simon MJG, Veering BT, Stienstra R, Van Kleef JW, Burm AGL (2002) The effects of age on neural blockade and hemodynamic changes after epidural anesthesia with ropivacaine. Anesth Analg 94:1325–1330

    Article  PubMed  CAS  Google Scholar 

  24. MacKichan JJ. Influence of protein binding and use of unbound (free) drug concentrations. In: Evans WE, Schentag JJ,Jusko WJ (eds) Applied pharmacokinetics. Principles of therapeuticdrug monitoring. 3rd ed. Lippincott Williams & Wilkins, Baltimore

  25. Wiedemann D, Mühlnickel B, Staroske E, Neumann W, Röse W (2000) Ropivacaine plasma concentrations during 120-hour epidural infusion. Br J Anaesth 85(6):830–835

    Article  PubMed  CAS  Google Scholar 

  26. Hansen TG, Ilett KF, Reid C, Lim SI, Hackett LP, Bergesio R (2001) Caudal ropivacaine in infants: population pharmacokinetics and plasma concentrations. Anesthesiology 94:579–584

    Article  PubMed  CAS  Google Scholar 

  27. Bleckner LL, Bina S, Kwon KH, McKnight G, Dragovich A, Buckenmaier CC (2010) Serum ropivacaine concentrations and systemic local anesthetic toxicity in trauma patients receiving long-term continuous peripheral nerve block catheters. Anesth Analg 110:630–634

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by a grant from the Foundation IRCCS Policlinico San Matteo, Pavia, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Regazzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cusato, M., Allegri, M., Niebel, T. et al. Flip-flop kinetics of ropivacaine during continuous epidural infusion influences its accumulation rate. Eur J Clin Pharmacol 67, 399–406 (2011). https://doi.org/10.1007/s00228-010-0927-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-010-0927-x

Keywords

Navigation