Skip to main content

Advertisement

Log in

Optimizing treatment outcome of first-line anti-tuberculosis drugs: the role of therapeutic drug monitoring

  • Review
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Introduction

Tuberculosis (TB) remains one of the world’s deadliest communicable diseases. Although cure rates of the standard four-drug (rifampicin, isoniazid, pyrazinamide, ethambutol) treatment schedule can be as high as 95–98 % under clinical trial conditions, success rates may be much lower in less well resourced countries. Unsuccessful treatment with these first-line anti-TB drugs may lead to the development of multidrug resistant and extensively drug resistant TB. The intrinsic interindividual variability in the pharmacokinetics (PK) of the first-line anti-TB drugs is further exacerbated by co-morbidities such as HIV infection and diabetes.

Methods

Therapeutic drug monitoring has been proposed in an attempt to optimize treatment outcome and reduce the development of drug resistance. Several studies have shown that maximum plasma concentrations (C max), especially of rifampicin and isoniazid, are well below the proposed target C max concentrations in a substantial fraction of patients being treated with the standard four-drug treatment schedule, even though treatment’s success rate in these studies was typically at least 85 %.

Discussion

The proposed target C max concentrations are based on the concentrations of these agents achieved in healthy volunteers and patients receiving the standard doses. Estimation of C max based on one or two sampling times may not have the necessary accuracy since absorption rate, especially for rifampicin, may be highly variable. In addition, minimum inhibitory concentration (MIC) variability should be taken into account to set clinically meaningful susceptibility breakpoints. Clearly, there is a need to better define the key target PK and pharmacodynamic (PD) parameters for therapeutic drug monitoring (TDM) of the first-line anti-TB drugs to be efficacious, C max (or area under the curve (AUC)) and C max/MIC (or AUC/MIC).

Conclusion

Although TDM of first-line anti-TB drugs has been successfully used in a limited number of specialized centers to improve treatment outcome in slow responders, a better characterization of the target PK and/or PK/PD parameters is in our opinion necessary to make it cost-effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization (2014) Global tuberculosis report. http://apps.who.int/iris/bitstream/10665/137094/1/9789241564809_eng.pdf. Accessed 12 Nov 2015

  2. World Health Organization (2010) Treatment of tuberculosis guidelines, 4th edn. http://apps.who.int/iris/bitstream/10665/44165/1/9789241547833_eng.pdf?ua=1&ua=1. Accessed 12 Nov 2015

  3. Sia IG, Wieland ML (2011) Current concepts in the management of tuberculosis. Mayo Clin Proc 86:348–3461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gillespie SH, Crook AM, McHugh TD, Mendel CM, Meredith SK, Murray SR et al (2014) Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N Engl J Med 371:1577–1587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Egelund EF, Peloquin CA (2012) Pharmacokinetic variability and tuberculosis treatment outcomes, including acquired drug resistance. Clin Infect Dis 55:178–179

    Article  CAS  PubMed  Google Scholar 

  6. Pasipanodya JG, Srivastava S, Gumbo T (2012) Meta-analysis of clinical studies supports the pharmacokinetic variability hypothesis of acquired drug resistance and failure of antituberculosis therapy. Clin Infect Dis 55:169–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reynolds J, Heysell SK (2014) Understanding pharmacokinetics to improve tuberculosis treatment outcome. Expert Opin Drug Metab Toxicol 10:813–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alsultan A, Peloquin CA (2014) Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs 74:839–854

    Article  CAS  PubMed  Google Scholar 

  9. Thummel KE, Shen DD, Isoherranen N (2011) Design and optimization of dosage regimens—pharmacokinetic data. In: Brunton L, Chabner B, Knollman B (eds) Goodman & Gilman’s the pharmacological basis of therapeutics, 12th edn. McGraw-Hill, New York, pp 1891–1990

    Google Scholar 

  10. Acocella G (1978) Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet 3:108–127

    Article  CAS  PubMed  Google Scholar 

  11. Holdiness MR (1984) Clinical pharmacokinetics of the antituberculosis drugs. Clin Pharmacokinet 9:511–544

    Article  CAS  PubMed  Google Scholar 

  12. Zent C, Smith P (1995) Study of the effect of concomitant food on the bioavailability of rifampicin, isoniazid and pyrazinamide. Tuber Lung Dis 76:109–113

    Article  CAS  PubMed  Google Scholar 

  13. Peloquin CA, Namdar R, Singleton MD, Nix DE (1999) Pharmacokinetics of rifampin under fasting conditions, with food, and with antacids. Chest 115:12–18

    Article  CAS  PubMed  Google Scholar 

  14. Buniva G, Pagani V, Carozzi A (1983) Bioavailability of rifampicin capsules. Int J Clin Pharmacol Ther Toxicol 1:404–409

    Google Scholar 

  15. Polasa K, Krishnaswamy K (1983) Effect of food on bioavailability of rifampicin. J Clin Pharmacol 23:433–437

    Article  CAS  PubMed  Google Scholar 

  16. Loos U, Musch E, Jensen JC, Mikus G, Schwabe HK, Eichelbaum M (1985) Pharmacokinetics of oral and intravenous rifampicin during chronic administration. Klin Wochenschr 3:1205–1211

    Article  Google Scholar 

  17. Loos U, Musch E, Jensen JC, Schwabe HK, Eichelbaum M (1987) Influence of the enzyme induction by rifampicin on its presystemic metabolism. Pharmacol Ther 33:201–204

    Article  CAS  PubMed  Google Scholar 

  18. Boman G, Ringberger V-A (1974) Binding of rifampicin by human plasma proteins. Eur J Clin Pharmacol 7:369–373

    Article  CAS  PubMed  Google Scholar 

  19. Jamis-Dow CA, Katki AG, Collins JM, Klecker RW (1997) Rifampin and rifabutin and their metabolism by human liver esterases. Xenobiotica 27:1015–1024

    Article  CAS  PubMed  Google Scholar 

  20. Nakajima A, Fukami T, Kobayashi Y, Watanabe A, Nakajima M, Yokoi T (2011) Human arylacetamide deacetylase is responsible for deacetylation of rifamycins: rifampycin, rifabutin, and rifapentine. Biochem Pharmacol 82:1747–1756

    Article  CAS  PubMed  Google Scholar 

  21. Houin G, Beucler A, Richelet S, Brioride R, Lafaix CH, Tillement JP (1983) Pharmacokinetics of rifampicin and desacetylrifampicin in tuyberculosis patients after different rates of infusion. Ther Drug Monit 5:67–72

    Article  CAS  PubMed  Google Scholar 

  22. Song SH, Chang HE, Jun SH, Park KU, Lee JH, Lee E-M et al (2013) Relationship between CES2 genetic variations and rifampicin metabolism. J Antimicrob Chemother 68:1281–1284

    Article  CAS  PubMed  Google Scholar 

  23. Seng K-Y, Hee K-H, Soon G-H, Chew N, Khoo SH, Lee LS-U (2015) Population pharmacokinetics of rifampicin and 25-deacetyl-rifampicin in healthy Asian adults. J Antimicrob Chemother 70:3298–3306

    CAS  PubMed  Google Scholar 

  24. Hartkoorn RC, Chandler B, Owen A, Ward SA, Bertel Squirel S, Back DJ, Khoo SH (2007) Differential drug susceptibility of intracellular and extracellular tuberculosis, and the impact of P-glycoprotein. Tuberculosis (Edinb) 87:248–255

    Article  CAS  Google Scholar 

  25. Chigutsa E, Visser ME, Swart EC, Denti P, Pushpakom S, Egan D et al (2011) The SLCO1B1 rs4149032 polymorphism is highly prevalent in South Africans and is associated with reduced rifampin concentrations: dosing implications. Antimicrob Agents Chemother 55:4122–4127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rodriguez-Castillo JA, Arce-Mendoza AY, Quintanilla-Siller A, Rendon A, Salinas-Carmona MC, Rosas-Taraco MG (2015) Possible association of rare polymorphism in the ABCB1 gene with rifampin and ethambutol drug-resistant tuberculosis. Tuberculosis (Edinb) 95:532–537

    Article  CAS  Google Scholar 

  27. Rifadin® Summary of product characteristics. http://www.medicines.org.uk/emc/medicine/21223/SPC/Rifadin+300mg+Capsules. Accessed 22 Sep 2014

  28. Burman WJ, Gallicano K, Peloquin C (2001) Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin Pharmacokinet 40:327–341

    Article  CAS  PubMed  Google Scholar 

  29. Niemi M, Backman JT, Fromm MF, Neuvonen PJ, Kivistö KT (2003) Pharmacokinetic interactions with rifampicin: clinical relevance. Clin Pharmacokinet 42:819–850

    Article  CAS  PubMed  Google Scholar 

  30. Semvua H, Kibiki GS, Kisanga ER, Boeree MJ, Burger D, Aarnoutse R (2015) Pharmacological interactions between rifampicin and antiretroviral drugs: challenges and research priorities for resource-limited settings. Ther Drug Monit 37:22–32

    Article  CAS  PubMed  Google Scholar 

  31. Becker C, Dressman JB, Amidon GL, Jungiger HE, Kopp S, Midha KK et al (2007) Biowaiver monographs for immediate release solid oral dosage forms: isoniazid. J Pharm Sci 96:522–531

    Article  CAS  PubMed  Google Scholar 

  32. Männisto P, Mantyla R, Klinge E, Nykanen S, Koponen A, Lamminsivu U (1982) Influence of various diets on the bioavailability of isoniazid. J Antimicrob Chemother 10:427–434

    Article  PubMed  Google Scholar 

  33. Boxenbaum HG, Bekersky I, Mattaliano V, Kaplan SA (1975) Plasma and salivary concentrations of isoniazid in man: preliminary findings in two slow acetylator subjects. J Pharmacokinet Biopharm 3:443–456

    Article  CAS  PubMed  Google Scholar 

  34. Woo J, Cheung W, Chan R, Chan HS, Cheng A, Chan K (1996) In vitro protein binding characteristics of isoniazid, rifampicin, and pyrazinamide to whole plasma, albumin, alpha-1-acid glycoprotein. Clin Biochem 29:175–177

    Article  CAS  PubMed  Google Scholar 

  35. Kinzig-Schippers M, Tomalik-Scharte D, Jetter A, Scheidel B, Jakob V, Rodamer M et al (2005) Should we use N-acetyltransferase type 2 genotyping to personalize isoniazid doses? Antimicrob Agents Chemother 49:1733–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ben Mahmoud L, Ghozzi K, Kamoun A, Hakim A, Hachicha H, Hammami S et al (2012) Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor of antituberculosis drug-induced hepatotoxicity in Tunisian patients with tuberculosis. Pathol Biol (Paris) 60:324–330

    Article  CAS  Google Scholar 

  37. Ohno M, Yamaguchi I, Yamamoto I, Fukuda T, Yokota S, Maekura R et al (2000) Slow N-acetyltransferase 2 genotype affects the incidence of isoniazid and rifampicin-induced hepatotoxicity. Int J Tuberc Lung Dis 2:256–261

    Google Scholar 

  38. Huang YS, Chern HD, Su WJ, Wu JC, Lai SL, Yang SY et al (2002) Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. Hepatology 35:883–889

    Article  CAS  PubMed  Google Scholar 

  39. Azuma J, Ohno M, Kubota R, Yokota S, Nagai T, Tsuyuguchi K et al (2013) NAT2 genotype guided regimen reduces isoniazid-induced liver injury and early treatment failure in the 6-month four-drug standard treatment of tuberculosis: a randomized controlled trial for pharmacogenetics-based therapy. Eur J Clin Pharmacol 69:1091–1101

    Article  CAS  PubMed  Google Scholar 

  40. Peloquin CA, Bulpitt AE, Jaresko GS, Jelliffe RW, James GT, Nix DE (1998) Pharmacokinetics of pyrazinamide under fasting conditions, with food, and with antacids. Pharmacotherapy 18:1205–1211

    CAS  PubMed  Google Scholar 

  41. Perlman DC, Segal Y, Rosenkranz S, Rainey PM, Peloquin CA, Remmel RP et al (2004) The clinical pharmacokinetics of pyrazinamide in HIV-infected persons with tuberculosis. Clin Infect Dis 38:556–564

    Article  CAS  PubMed  Google Scholar 

  42. Lacroix C, Phan Hoang T, Nouveau J, Guyonnaud C, Laine G, Duwoos H et al (1989) Pharmacokinetics of pyrazinamide and its metabolites in healthy subjects. Eur J Clin Pharmacol 36:395–400

    Article  CAS  PubMed  Google Scholar 

  43. Budha NR, Lee RE, Meibohm B (2008) Biopharmaceutics, pharmacokinetics and pharmacodynamics of antituberculosis drugs. Curr Med Chem 15:809–825

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Mitchison D (2003) The curious characteristics of pyrazinamide: a review. Int J Tuberc Lung Dis 7:6–21

    CAS  PubMed  Google Scholar 

  45. Lee CS, Gambertoglio JG, Brater DC, Benet LZ (1977) Kinetics of oral ethambutol in the normal subject. Clin Pharmacol Ther 22:615–621

    Article  CAS  PubMed  Google Scholar 

  46. Peloquin CA, Bulpitt AE, Jaresko GS, Jeliffe RW, Childs JM, Nix DE (1999) Pharmacokinetics of ethambutol under fasting conditions, with food, and with antacids. Antimicrob Agents Chemother 43:568–572

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhu M, Burman WJ, Starke JR, Stambaugh JJ, Steiner P, Bulpitt AE (2004) Pharmacokinetics of ethambutol in children and adults with tuberculosis. Int J Tuberc Lung Dis 8:1360–1367

    CAS  PubMed  Google Scholar 

  48. Lee CS, Brater DC, Gambertoglio JG, Benet LZ (1980) Disposition kinetics of ethambutol in man. J Pharmacokinet Biopharm 8:335–346

    Article  CAS  PubMed  Google Scholar 

  49. Becker C, Dressman JB, Amidon GL, Jungiger HE, Kopp S, Midha KK et al (2008) Biowaiver monographs for immediate release solid oral dosage forms: pyrazinamide. J Pharm Sci 97:3709–3720

    Article  CAS  PubMed  Google Scholar 

  50. Ameer B, Polk RE, Kline BJ, Grisafe JP (1982) Effect of food on ethambutol absorption. Clin Pharm 1:156–158

    CAS  PubMed  Google Scholar 

  51. Chatterjee D, Pramanik AK (2015) Tuberculosis in the African continent: a comprehensive review. Pathophysiology 22:73–83

    Article  PubMed  Google Scholar 

  52. Sahai J, Gallicano K, Swick L, Tailor S, Garber G, Seguin I et al (1997) Reduced plasma concentrations of antituberculosis drugs in patients with HIV infection. Ann Intern Med 127:289–293

    Article  CAS  PubMed  Google Scholar 

  53. Choudhri SH, Hawken M, Gathua S, Minyiri GO, Watkins W, Sahai J et al (1997) Pharmacokinetics of antimycobacterial drugs in patients with tuberculosis, AIDS and diarrhea. Clin Infect Dis 25:104–111

    Article  CAS  PubMed  Google Scholar 

  54. Gurumurthy P, Ramachandran G, Hemanth Kumar AK, Rajasekaran S, Padmapriyadarsini C, Swaminathan S et al (2004) Decreased bioavailability of rifampin and other antituberculosis drugs in patients with advanced human immunodeficiency virus disease. Antimicrob Agents Chemother 48:4473–4475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McIlleron H, Wash P, Burger A, Norman J, Folb PI, Smith P (2006) Determinants of rifampin, isoniazid, pyrazinamide, and ethambutol pharmacokinetics in a cohort of tuberculosis patients. Antimicrob Agents Chemother 50:1170–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chideya S, Winston CA, Peloquin CA, Bradford WZ, Hopewell PC, Wells CD et al (2009) Isoniazid, rifampin, ethambutol, and pyrazinamide pharmacokinetics and treatment outcomes among a predominantly HIV-infected cohort of adults with tuberculosis from Botswana. Clin Infect Dis 48:1685–1694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Saleri N, Dembélé SM, Villani P, Carvalho ACC, Cusato M, Bonkoungou V et al (2012) Systemic exposure to rifampicin in patients with tuberculosis and advanced HIV disease during highly active antiretroviral therapy in Burkina Faso. J Antimicrob Chemother 67:469–472

    Article  CAS  PubMed  Google Scholar 

  58. McIlleron H, Rustomjee R, Vahedi M, Mthiyane T, Denti P, Connolly C et al (2012) Reduced antituberculosis drug concentrations in HIV-infected patients who are men or have low weight: implications for international dosing guidelines. Antimicrob Agents Chemother 56:3232–3238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Van Oosterhout JJ, Dzinjalamala FK, Dimba A, Waterhouse D, Davies G, Zijlstra EE et al (2015) Pharmacokinetics of antituberculosis drugs in HIV-positive and HIV-negative adults in Malawi. Antimicrob Agents Chemother 59:6175–6180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Peloquin CA, Jaresko GS, Yong CL, Keung AC, Bulpitt AE, Jelliffe RW (1997) Population pharmacokinetic modeling of isoniazid, rifampin, and pyrazinamide. Antimicrob Agents Chemother 41:2670–2679

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Requena-Méndez A, Davies G, Ardrey A, Jave O, López-Romero SL, Ward SA et al (2012) Pharmacokinetics of rifampin in Peruvian tuberculosis patients with and without comorbid diabetes or HIV. Antimicrob Agents Chemother 56:2357–2363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Kim SH, Hong YP, Lew WJ, Yang SC, Lee EG (1995) Incidence of pulmonary tuberculosis among diabetics. Tuber Lung Dis 76:529–533

    Article  CAS  PubMed  Google Scholar 

  63. Alisjahbana B, van Crevel R, Sahiratmadja E, den Heijer M, Maya A, Istriana E et al (2006) Diabetes mellitus is strongly associated with tuberculosis in Indonesia. Int J Tuberc Lung Dis 10:696–6700

    CAS  PubMed  Google Scholar 

  64. Singla R, Khan N, Al-Sharif N, Al-Sayegh MO, Shaikh MA, Osman MM (2006) Influence of diabetes on manifestations and treatment outcome of pulmonary TB patients. Int J Tuberc Lung Dis 10:74–79

    CAS  PubMed  Google Scholar 

  65. Stevenson CR, Forouhi NG, Roglic G, Williams BG, Lauer JA, Dye C et al (2007) Diabetes and tuberculosis: the impact of the diabetes epidemic on tuberculosis incidence. BMC Public Health. doi:10.1186/1471-2458-7-234

    PubMed  PubMed Central  Google Scholar 

  66. Nijland HMJ, Ruslami R, Stalenhoef JE, Nelwan EJ, Alisjahbana B, Nelwan RHH et al (2006) Exposure to rifampicin is strongly reduced in patients with tuberculosis and type 2 diabetes. Clin Infect Dis 43:848–854

    Article  CAS  PubMed  Google Scholar 

  67. Ruslami R, Nijland HMJ, Adhiarta IGN, Kariadi SHKS, Alisjahbana B, Aarnoutse RE et al (2010) Pharmacokinetics of antituberculosis drugs in pulmonary tuberculosis patients with type 2 diabetes. Antimicrob Agents Chemother 54:1068–1074

    Article  CAS  PubMed  Google Scholar 

  68. Requena-Méndez A, Davies G, Waterhouse D, Ardrey A, Jave O, Lopez-Romero SL et al (2014) Effects of dosage, comorbidities, and food on isoniazid pharmacokinetics in Peruvian tuberculosis patients. Antimicrob Agents Chemother 58:7164–7170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Babalik A, Ulus IH, Bakirci N, Kuyucu T, Arpag H, Dagyildizi L et al (2013) Plasma concentrations of isoniazid and rifampin are decreased in adult pulmonary tuberculosis patients with diabetes mellitus. Antimicrob Agents Chemother 57:5740–5742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chang MJ, Chae J-W, Yun H-Y, Lee JI, Choi HD, Kim J et al (2015) Effects of type 2 diabetes mellitus on the population pharmacokinetics of rifampin in tuberculosis patients. Tuberculosis (Edinb) 95:54–59

    Article  CAS  Google Scholar 

  71. Launay-Vacher V, Izzedine H, Deray G (2005) Pharmacokinetic considerations in the treatment of tuberculosis in patients with renal failure. Clin Pharmacokinet 44:221–235

    Article  CAS  PubMed  Google Scholar 

  72. Stamatakis G, Montes C, Trouvin JH, Farinotti R, Fessi H, Kenouch S et al (1988) Pyrazinamide and pyrazinoic acid pharmacokinetics in patients with chronic renal failure. Clin Nephrol 30:230–234

    CAS  PubMed  Google Scholar 

  73. Malone RS, Fish DN, Spiegel DM, Childs JM, Peloquin CA (1999) The effect of hemodialysis on isoniazid, rifampin, pyrazinamide, and ethambutol. Am J Respir Crit Care Med 159:1580–1584

    Article  CAS  PubMed  Google Scholar 

  74. Acocella G, Bonollo L, Garimold M, Mainardi M, Tenconi LT, Nicolis FB (1972) Kinetics of rifampicin and isoniazid administered alone and in combination to normal subjects and patients with liver disease. Gut 13:47–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kenny MT, Strates B (1981) Metabolism and pharmacokinetics of the antibiotic rifampin. Drug Metab Rev 12:159–218

    Article  CAS  PubMed  Google Scholar 

  76. Lacroix C, Tranvouez JL, Phan Hoang T, Duwoos H, Lafont O (1990) Pharmacokinetics of pyrazinamide and its metabolites in patients with hepatic cirrhotic insufficiency. Arzneim Forsch 40:76–79

    CAS  Google Scholar 

  77. Verbeeck RK (2008) Pharmacokinetics and dosage adjustment in patients with hepatic insufficiency. Eur J Clin Pharmacol 64:1147–1161

    Article  CAS  PubMed  Google Scholar 

  78. Jenkins HE, Tolman AW, Yuen CM, Parr JB, Keshavjee S et al (2014) Incidence of multi-drug resistance tuberculosis in children: systematic review and global estimates. Lancet 383:1572–1579

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kwara A, Enimil A, Gillani FS, Yang H, Sarfo AM, Dompreh A et al (2015) Pharmacokinetics of first-line antituberculosis drugs using WHO revised dosage in children with tuberculosis with and without HIV coinfection. J Pediatr Infect Dis Soc. doi:10.1093/jpids/piv035

    Google Scholar 

  80. Goldman JL, Kearns GL, Abdel-Rahman SM (2011) Pharmacological considerations of antitubercular agents in children. In: Donald PR, van Helden PD (eds) Antituberculosis chemotherapy, progr resp Res vol 40. Karger, Basel, pp 161–175

    Chapter  Google Scholar 

  81. Schaaf HS, Garcia-Prats AJ, Donald PR (2015) Antituberculosis drugs in children. Clin Pharmacol Ther 98:252–265

    Article  CAS  PubMed  Google Scholar 

  82. Abernethy DR, Burckart GJ (2010) Pediatric dose selection. Clin Pharmacol Ther 87:270–271

    Article  CAS  PubMed  Google Scholar 

  83. Mahmood I (2014) Dosing in children: a critical review of the pharmacokinetic allometric scaling and modelling approaches in paediatric drug development and clinical settings. Clin Pharmacokinet 53:327–346

    Article  CAS  PubMed  Google Scholar 

  84. Thee S, Seddon JA, Donald PR, Seifart HI, Werely CJ, Hesseling AC et al (2011) Pharmacokinetics of isoniazid, rifampin, and pyrazinamide in children younger than two years of age with tuberculosis: evidence for implementation of revised World Health Organization recommendations. Antimicrob Agents Chemother 55:5560–5567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Verhagen LM, Lopez D, Hermans PW, Warris A, de Groot R, Garcia JF et al (2012) Pharmacokinetics of anti-tuberculosis drugs in Venezuelan children younger than 16 years of age: supportive evidence for the implementation of revised WHO dosing recommendations. Trop Med Int Health 17:1449–1456

    Article  CAS  PubMed  Google Scholar 

  86. Mlotha R, Waterhouse D, Dzinjalamala F, Ardrey A, Molyneux E, Davies GR et al (2015) J Antimicrob Chemother 70:1798–1803

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hiruy H, Rogers Z, Mbowane C, Adamson J, Ngotho L, Karim F et al (2015) Subtherapeutic concentrations of first-line anti-TB drugs in South African children treated according to current guidelines: the PHATISA study. J Antimicrob Chemother 70:1115–1123

    CAS  PubMed  Google Scholar 

  88. Schipani A, Pertinez H, Mlota R, Molyneux E, Lopez N, Dzinjalamala FK et al (2016) A simultaneous population pharmacokinetic analysis of rifampicin in Malawian adults and children. Br J Clin Pharmacol 81:679–687

    Article  CAS  PubMed  Google Scholar 

  89. Evans DA (1989) N-Acetyltransferase. Pharmacol Ther 42:157–234

    Article  CAS  PubMed  Google Scholar 

  90. Cho HJ, Koh WJ, Ryu YJ, Ki CS, Nam MH, Kim JW et al (2007) Genetic polymorphisms of NAT2 and CYP2E1 associated with antituberculosis drug-induced hepatotoxicity in Korean patients with pulmonary tuberculosis. Tuberculosis (Edinb) 87:551–556

    Article  CAS  Google Scholar 

  91. Kubota R, Ohno M, Hasunuma T, Iijima H, Azuma J (2007) Dose-escalation study of isoniazid in healthy volunteers with the rapid acetylator genotype of arylamine N-acetyltransferase 2. Eur J Clin Pharmacol 63:927–933

    Article  CAS  PubMed  Google Scholar 

  92. Ramachandran G, Swaminathan S (2012) Role of pharmacogenomics in the treatment of tuberculosis: a review. Pharmacogenomics Pers Med 5:89–98

    Google Scholar 

  93. Weiner M, Peloquin CA, Burman W, Luo CC, Engle M, Prihoda TJ et al (2010) Effect of tuberculosis, race and human gene SLCO1B1 polymorphism on rifampin concentrations. Antimicrob Agents Chemother 54:4192–4200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gumbo T, Louie A, Deziel MR, Liu W, Parsons LM, Salfinger M et al (2007) Concentration-dependent Mycobacterium tuberculosis killing and prevention of resistance by rifampicin. Antimicrob Agents Chemother 51:3781–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jayaram R, Gaonkar S, Kaur P, Suresh BL, Mahesh BN, Jayashree R et al (2003) Pharmacokinetics-pharmacodynamics of rifampicin in an aerosol infection of model of tuberculosis. Antimicrob Agents Chemother 47:2118–2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jayaram R, Shandil RK, Gaonkar S, Kaur P, Suresh BL, Mahesh BN et al (2004) Isoniazid pharmacokinetics-pharmacodynamics in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother 48:2951–2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gumbo T (2010) New susceptibility breakpoints for first-line antituberculosis drugs based on antimicrobial pharmacokinetic/pharmacodynamic science and population pharmacokinetic variability. Antimicrob Agents Chemother 54:1484–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chigutsa E, Pasipanodya JG, Visser ME, Van Helden PD, Smithe PJ, Sirgel FA et al (2015) Impact of nonlinear interactions of pharmacokinetics and MICs on sputum bacillary kill rates as a marker of sterilizing effect in tuberculosis. Antimicrob Agents Chemother 59:38–45

    Article  PubMed  CAS  Google Scholar 

  99. Mitchison DA, Davies GR (2008) Assessment of the efficacy of new anti-tuberculosis drugs. Open Infect Dis J 2:59–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Global Alliance for TB Drug Development (2008) Handhook of anti-tuberculosis agents. Tuberculosis 88:85–170

    Article  Google Scholar 

  101. Steingart KR, Jotblad S, Robsky K, Deck D, Hopewell PC, Huang D et al (2011) Higher-dose rifampin for the treatment of pulmonary tuberculosis: a systematic review. Int J Tuberc Lung Dis 15:305–316

    CAS  PubMed  Google Scholar 

  102. Boeree MJ, Diacon AH, Dawson R, Narunsky K, du Bois J, Venter A et al (2015) A dose ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Crit Care Med 191:1058–1065

    Article  CAS  PubMed  Google Scholar 

  103. Zeitlinger MA, Derendorf H, Mouton JW, Cars O, Craig WA, Andes D et al (2011) Protein binding: do we ever learn? Antimicrob Agents Chemother 55:3067–3074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dartois V (2014) The path of anti-tuberculosis drugs: from blood to lesions to mycobacterial cells. Nat Rev Microbiol 12:159–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pasipanodya J, Gumbo T (2011) An oracle: antituberculosis pharmacokinetics-pharmacodynamics, clinical correlation, and clinical trial simulations to predict the future. Antimicrob Agents Chemother 55:24–34

    Article  CAS  PubMed  Google Scholar 

  106. Rodvold KA, George JM, Yoo L (2011) Penetration of anti-infective agents into pulmonary epithelial lining fluid: focus on antibacterial agents. Clin Pharmacokinet 50:637–664

    Article  CAS  PubMed  Google Scholar 

  107. Ziglam HM, Baldwin DR, Daniels I, Andrews JM, Finch RG (2002) Rifampicin concentrations in bronchial mucosa, epithelial lining fluid, alveolar macrophages and serum following single 600 mg oral dose in patients undergoing fibre-optic bronchoscopy. J Antimicrob Chemother 50:1011–1015

    Article  CAS  PubMed  Google Scholar 

  108. Rodvold KA, Yoo L, George JM (2011) Penetration of anti-infective agents into pulmonary epithelial lining fluid: focus on antifungal, antitubercular and miscellaneous anti-infective agents. Clin Pharmacokinet 50:689–704

    Article  CAS  PubMed  Google Scholar 

  109. Rennard SI, Basset G, Lecossier D, O’Donnell KM, Pinkston P, Martin PG et al (1986) Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J Appl Physiol 60:532–538

    CAS  PubMed  Google Scholar 

  110. Kiem S, Schentag JJ (2008) Interpretation of antibiotic concentration ratios measured in epithelial lining fluid. Antimicrob Agents Chemother 52:24–36

    Article  CAS  PubMed  Google Scholar 

  111. Conte JE Jr, Golden JA, Duncan S, McKenna E, Zurlinden E (1999) Intrapulmonary concentrations of pyrazinamide. Antimicrob Agents Chemother 43:1329–1333

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Conte JE Jr, Golden JA, Kipps J, Lin ET, Zurlinden E (2001) Effects of AIDS and gender on steady state plasma and intrapulmonary concentrations of ethambutol. Antimicrob Agents Chemother 45:2891–2896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Conte JE Jr, Golden JA, McQuitty M, Kipps J, Zurlinden E (2002) Effects of gender, AIDS, and acetylator status on intrapulmonary concentrations of isoniazid. Antimicrob Agents Chemother 46:2358–2364

    Article  CAS  PubMed  Google Scholar 

  114. Conte JE Jr, Golden JA, Kipps J, Lin ET, Duncan S, McKenna E et al (2004) Effect of sex and AIDS status on the plasma and intrapulmonary pharmacokinetics of rifampicin. Clin Pharmacokinet 43:395–404

    Article  CAS  PubMed  Google Scholar 

  115. Kjellsson MC, Via LE, Goh A, Weiner D, Low KM, Kern S et al (2012) Pharmacokinetic evaluation of the penetration of antituberculosis agents in rabbit pulmonary lesions. Antimicrob Agents Chemother 56:446–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Elliott AM, Berning SA, Iseman MD, Peloquin CA (1995) Failure of drug penetration and acquisition of drug resistance in chronic tuberculous empyema. Tuber Lung Dis 76:463–467

    Article  CAS  PubMed  Google Scholar 

  117. Pillai G, Fourie PB, Padayatchi N, Onyebujoh PC, McIlleron H, Smith PJ et al (1999) Recent bioequivalence studies on fixed-dose combination anti-tuberculosis drug formulations available on the global market. Int J Tuberc Lung Dis 3(Suppl 3):S309–S316

    CAS  PubMed  Google Scholar 

  118. Laserson KF, Kenyon AS, Kenyon TA, Layloff T, Binkin NJ (2001) Substandard tuberculosis drugs on the global market and their simple detection. Int J Tuberc Lung Dis 5:448–454

    CAS  PubMed  Google Scholar 

  119. McIlleron H, Wash P, Burger A, Folb P, Smith P (2002) Widespread distribution of a single drug rifampicin formulation of inferior bioavailability in South Africa. Int J Tuberc Lung Dis 6:356–361

    CAS  PubMed  Google Scholar 

  120. Panchagnula R, Agrawal S (2004) Biopharmaceutic and pharmacokinetic aspects of variable bioavailability of rifampicin. Int J Pharm 271:1–4

    Article  CAS  PubMed  Google Scholar 

  121. Becker C, Dressman JB, Amidon GL, Jungiger HE, Kopp S, Midha KK et al (2008) Biowaiver monographs for immediate release solid oral dosage forms: ethambutol. J Pharm Sci 97:1350–1360

    Article  CAS  PubMed  Google Scholar 

  122. Becker C, Dressman JB, Jungiger HE, Kopp S, Midha KK, Shah VP et al (2009) Biowaiver monographs for immediate release solid oral dosage forms: rifampicin. J Pharm Sci 98:2252–2267

    Article  CAS  PubMed  Google Scholar 

  123. Peloquin CA (2002) Therapeutic drug monitoring in the treatment of tuberculosis. Drugs 62:2169–2183

    Article  CAS  PubMed  Google Scholar 

  124. Peloquin CA (1991) Antituberculosis drugs: pharmacokinetics. In: Heifets L (ed) Drug susceptibility in the chemotherapy of mycobacterial infections. CRC Press, Boca Raton, pp 59–88

    Google Scholar 

  125. Pasipanodya J, Srivastava S, Gumbo T (2012) New susceptibility breakpoints and the regional variability of MIC distribution in Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 56:5428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tappero JW, Bradford WZ, Agerton TB, Hopewell P, Reingold AL, Lockman S et al (2005) Serum concentrations of antimycobacterial drugs in patients with pulmonary tuberculosis in Botswana. Clin Infect Dis 41:461–469

    Article  CAS  PubMed  Google Scholar 

  127. Burhan E, Ruesen C, Ruslami R, Ginanjar A, Mangunnegoro H, Ascobat P et al (2013) Isoniazid, rifampin and pyrazinamide plasma concentrations in relation to treatment response in Indonesian pulmonary tuberculosis patients. Antimicrob Agents Chemother 57:3614–3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Prahl JB, Johansen IS, Cohen AS, Frimodt-Møller N, Andersen ÅB (2014) Clinical significance of 2 h plasma concentrations of first-line anti-tuberculosis drugs: a prospective observational study. J Antimicrob Chemother 69:2841–2847

    Article  CAS  PubMed  Google Scholar 

  129. Mah A, Kharrat H, Ahmed R, Gao Z, Der E, Hansen E et al (2015) Serum drug concentrations of INH and RMP predict 2-month sputum culture results in tuberculosis patients. Int J Tuberc Lung Dis 19:210–215

    Article  CAS  PubMed  Google Scholar 

  130. Sturkenboom MGG, Akkerman OW, Bolhuis MS, de Lange WCM, van der Werf TS (2015) Adequate design of pharmacokinetic-pharmacodynamic studies will help optimize tuberculosis treatment for the future. Antimicrob Agents Chemother 59:2474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Sturkenboom MGG, Mulder LW, de Jager A, van Altena R, Aarnoutse RA et al (2015) Pharmacokinetic modeling and optimal sampling strategies for therapeutic drug monitoring of rifampin in patients with tuberculosis. Antimicrob Agents Chemother 59:4907–4913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pasipanodya JG, McIlleron H, Burger A, Wash PA, Smith P, Gumbo T (2013) Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis 208:1464–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yew WW (1998) Therapeutic drug monitoring in antituberculosis chemotherapy. Ther Drug Monit 20:469–472

    Article  CAS  PubMed  Google Scholar 

  134. Roberts JA, Norris R, Paterson DL, Martin JH (2011) Therapeutic drug monitoring of antimicrobials. Br J Clin Pharmacol 73:27–36

    Article  CAS  Google Scholar 

  135. Van Crevel R, Alisjahbana B, de Lange WCM, Borst F, Danusantoso H, van der Meer JWM et al (2002) Low plasma concentrations of rifampicin in tuberculosis patients in Indonesia. Int J Tuberc Lung Dis 6:497–502

    PubMed  Google Scholar 

  136. Gengiah TN, Botha JH, Soowamber D, Naidoo K, Abdool Karim SS (2014) Low rifampicin concentrations in tuberculosis patients with HIV infection. J Infect Dev Ctries 8:987–993

    Article  CAS  PubMed  Google Scholar 

  137. Mehta JB, Shantaveerapa H, Byrd RP Jr, Morton SE, Fountain F, Roy TM (2001) Utility of rifampin blood levels in the treatment and follow-up of active pulmonary tuberculosis in patients who were slow to respond to routine directly observed therapy. Chest 120:1520–1524

    Article  CAS  PubMed  Google Scholar 

  138. Mota L, Al-Efraij K, Campbell JR, Cook VJ, Marra F, Johnston J (2016) Therapeutic drug monitoring in anti-tuberculosis treatment: a systematic review of meta-analysis. Int J Tuberc Lung Dis 20:819–826

    Article  CAS  PubMed  Google Scholar 

  139. Ray J, Gardiner I, Marriott D (2003) Managing antituberculosis drug therapy by therapeutic drug monitoring of rifampicin and isoniazid. Intern Med J 33:229–234

    Article  CAS  PubMed  Google Scholar 

  140. Li J, Burzynski JN, Lee Y-A, Berg D, Driver CR, Ridzon R et al (2004) Use of therapeutic drug monitoring for multi-drug resistant tuberculosis patients. Chest 126:1770–1776

    Article  PubMed  Google Scholar 

  141. Heysell SK, Moore JL, Keller SJ, Houpt ER (2010) Therapeutic drug monitoring for slow response to tuberculosis treatment in a state control program, Virginia, USA. Emerg Infect Dis 16:1546–1553

    Article  PubMed  PubMed Central  Google Scholar 

  142. Babalik A, Mannix S, Francis D, Menzies D (2011) Therapeutic drug monitoring in the treatment of active tuberculosis. Can Respir J 18:225–229

    Article  PubMed  PubMed Central  Google Scholar 

  143. Magis-Escurra C, van den Boogaard J, Ijdema D, Boeree M, Aarnoutse R (2012) Therapeutic drug monitoring in the treatment of tuberculosis patients. Pulm Pharmacol Ther 25:83–86

    Article  CAS  PubMed  Google Scholar 

  144. Heysell SK, Moore JL, Staley D, Dodge D, Houpt ER (2013) Early therapeutic drug monitoring for isoniazid and rifampin among diabetics with newly diagnosed tuberculosis in Virginia, USA. Tuberc Res Treat. doi:10.1155/2013/129723

    PubMed  PubMed Central  Google Scholar 

  145. Van Tongeren L, Nolan S, Cook VJ, FitzGerald JM, Johnston JC (2013) Therapeutic drug monitoring in the treatment of tuberculosis: a retrospective analysis. Int J Tuberc Lung Dis 17:221–224

    Article  PubMed  Google Scholar 

  146. Schön T, Juréen P, Giske CG, Chryssanthou E, Sturegård E, Werngren J et al (2009) Evaluation of wild-type MIC distribution as a tool for determination of clinical breakpoints for Mycobacterium tuberculosis. J Antimicrob Chemother 64:786–793

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger K. Verbeeck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verbeeck, R.K., Günther, G., Kibuule, D. et al. Optimizing treatment outcome of first-line anti-tuberculosis drugs: the role of therapeutic drug monitoring. Eur J Clin Pharmacol 72, 905–916 (2016). https://doi.org/10.1007/s00228-016-2083-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-016-2083-4

Keywords

Navigation