Skip to main content

Advertisement

Log in

Risk factors for QTc interval prolongation

  • Pharmacodynamics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Prolongation of the QTc interval may result in Torsade de Pointes, a ventricular arrhythmia. Numerous risk factors for QTc interval prolongation have been described, including the use of certain drugs. In clinical practice, there is much debate about the management of the risks involved. In this study, we quantified the effect of these risk factors on the length of the QTc interval.

Methods

We analyzed all ECGs that were taken during routine practice between January 2013 and October 2016 in the Spaarne Gasthuis, a general teaching hospital in the Netherlands. We collected laboratory values in the week before the ECG recording and the drugs prescribed. For the identification of risk factors, we used multilevel linear regression analysis to correct for multiple ECG recordings per patient.

Results

We included 133,359 ECGs in our study, taken in 40,037 patients. Patients using one QT-prolonging drug had a 11.08 ms (95% CI 10.63–11.52; p < 0.001) longer QTc interval. Patients using two QT-prolonging drugs had a 3.04 ms (95% CI 2.06–4.02; p < 0.001) increase in the QTc interval compared to patients using one QT-prolonging drug. Women had a longer QTc interval compared to men (16.30 ms 95% CI 14.59–18.01; p < 0.001). The QTc interval increased with increasing age, but the difference between men and women diminished. Other independent risk factors that significantly prolonged the QTc interval with at least 10 ms were hypokalemia, hypocalcemia, and the use of loop diuretics.

Conclusion

We identified and quantified various risk factors for QTc interval prolongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Straus SM, Kors JA, De Bruin ML, van der Hooft CS, Hofman A, Heeringa J, Deckers JW, Kingma JH, Sturkenboom MC, Stricker BH, Witteman JC (2006) Prolonged QTc interval and risk of sudden cardiac death in a population of older adults. J Am Coll Cardiol 47(2):362–367. https://doi.org/10.1016/j.jacc.2005.08.067

    Article  PubMed  Google Scholar 

  2. Tisdale J, Jaynes H, Kingery J, Mourad N, Trujillo T, Overholser B, Kovacs RJ (2013) Development and validation of a risk score to predict QT interval prolongation in hospitalized patients. Circ Cardiovasc Qual Outcomes 6(4):479–487. https://doi.org/10.1161/CIRCOUTCOMES.113.000152

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mangoni A, Kinirons M, Swift C, Jackson SHD (2003) Impact of age on QT interval and QT dispersion in healthy subjects: a regression analysis. Age Ageing 32(3):326–331. https://doi.org/10.1093/ageing/32.3.326

    Article  PubMed  Google Scholar 

  4. Benoit S, Mendelsohn A, Nourjah P, Staffa J, Graham D (2005) Risk factors for prolonged QTc among US adults: Third National Health and Nutrition Examination Survey. Eur J Cardiovasc Prev Rehabil 12(4):363–368. https://doi.org/10.1097/01.hjr.0000173110.21851.a9

    Article  PubMed  Google Scholar 

  5. Sohaib SMA, Papacosta O, Morris R, Macfarlane P, Whincup P (2008) Length of the QT interval: determinants and prognostic implications in a population-based prospective study of older men. J Electrocardiol 41(6):704–710. https://doi.org/10.1016/j.jelectrocard.2008.01.010

    Article  PubMed  Google Scholar 

  6. Trojak B, Astruc K, Pinoit J, Chauvet Gelinier J, Ponavoy E, Bonin B, Gisselmann A (2009) Hypokalemia is associated with lengthening of QT interval in psychiatric patients on admission. Psychiatry Res 169(3):257–260. https://doi.org/10.1016/j.psychres.2008.06.031

    Article  CAS  PubMed  Google Scholar 

  7. Jardin CGM, Putney D, Michaud S (2014) Assessment of drug-induced torsade de pointes risk for hospitalized high-risk patients receiving QT-prolonging agents. Ann Pharmacother 48(2):196–202. https://doi.org/10.1177/1060028013512614

    Article  PubMed  Google Scholar 

  8. Niemeijer MN, van den Berg ME, Eijgelsheim M, Rijnbeek PR, Stricker BH (2015) Pharmacogenetics of drug-induced QT interval prolongation: an update. Drug Saf 38(10):855–867. https://doi.org/10.1007/s40264-015-0316-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roden D (2004) Drug-induced prolongation of the QT interval. N Engl J Med 350(10):1013–1022. https://doi.org/10.1056/NEJMra032426

    Article  CAS  PubMed  Google Scholar 

  10. Yap Y, Camm AJ (2003) Drug induced QT prolongation and torsades de pointes. Heart 89(11):1363–1372. https://doi.org/10.1136/heart.89.11.1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Straus SM, Sturkenboom MC, Bleumink GS, Dieleman JP, van der Lei J, de Graeff PA, Kingma JH, Stricker BH (2005) Non-cardiac QTc-prolonging drugs and the risk of sudden cardiac death. Eur Heart J 26(19):2007–2012. https://doi.org/10.1093/eurheartj/ehi312

    Article  PubMed  Google Scholar 

  12. De Bruin ML, Langendijk PN, Koopmans RP, Wilde AA, Leufkens HG, Hoes AW (2007) In-hospital cardiac arrest is associated with use of non-antiarrhythmic QTc-prolonging drugs. Br J Clin Pharmacol 63(2):216–223. https://doi.org/10.1111/j.1365-2125.2006.02722.x

    Article  PubMed  Google Scholar 

  13. Woosley, RL and Romero, KA (2015) QT drug list. http://wwwCrediblemedsorg Accessed Oct 2015

  14. Bazett HC (1920) An analysis of the time-relations of the electrocardiograms. Heart 7:353–370

    Google Scholar 

  15. EMEA (1997) The assessment of the potential for QT interval prolongation by non-cardiovascular medicinal products. http://www.fda.gov/ohrms/dockets/ac/03/briefing/pubs/cpmp.pdf, http://www.fda.gov/ohrms/dockets/ac/03/briefing/pubs/cpmp.pdf

  16. Fridericia LS (1920) Die systolendauer im elektrokardiogramm bei normalen menschen und bei herzkranken. Acta Med Scand 53:469–486

    Article  Google Scholar 

  17. Vandenberk B, Vandael E, Robyns T, Vandenberghe J, Garweg C, Foulon V, Ector J, Willems R (2016) Which QT correction formulae to use for QT monitoring? J Am Heart Assoc 5. https://doi.org/10.1161/JAHA.116.003264

  18. Zeltser D, Justo D, Halkin A, Prokhorov V, Heller K, Viskin S (2003) Torsade de pointes due to noncardiac drugs: most patients have easily identifiable risk factors. Medicine (Baltimore) 82(4):282–290. https://doi.org/10.1097/01.md.0000085057.63483.9b

    Google Scholar 

  19. Meid AD, von Medem A, Heider D, Adler JB, Günster C, Seidling HM, Quinzler R, König HH, Haefeli WE (2017) Investigating the additive interaction of QT-prolonging drugs in older people using claims data. Drug Saf 40(2):133–144. https://doi.org/10.1007/s40264-016-0477-y

    Article  PubMed  Google Scholar 

  20. Nachimuthu S, Assar MD, Schussler JM (2012) Drug-induced QT interval prolongation: mechanisms and clinical management. Ther Adv Drug Saf 3(5):241–253. https://doi.org/10.1177/2042098612454283

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pham TV, Rosen MR (2002) Sex, hormones, and repolarization. Cardiovasc Res 53(3):740–751. https://doi.org/10.1016/S0008-6363(01)00429-1

    Article  CAS  PubMed  Google Scholar 

  22. Kurokawa J, Kodama M, Clancy CE, Furukawa T (2016) Sex hormonal regulation of cardiac ion channels in drug-induced QT syndromes. Pharmacol Ther . https://doi.org/10.1016/j.pharmthera.2016.09.004

  23. Rautaharju PM, Zhou SH, Wong S, Calhoun HP, Berenson GS, Prineas R, Davignon A (1992) Sex differences in the evolution of the electrocardiographic QT interval with age. Can J Cardiol 8(7):690–695

    CAS  PubMed  Google Scholar 

  24. Tisdale JE (2016) Drug-induced QT interval prolongation and torsades de pointes: role of the pharmacist in risk assessment, prevention and management. Can Pharm J (Ott) 149(3):139–152. https://doi.org/10.1177/1715163516641136

    Article  Google Scholar 

  25. Estes NA 3rd (2013) Computerized interpretation of ECGs: supplement not a substitute. Circ Arrhythm Electrophysiol 6(1):2–4. https://doi.org/10.1161/CIRCEP.111.000097

    Article  PubMed  Google Scholar 

  26. Postema PG, De Jong JS, Van der Bilt IA, Wilde AA (2008) Accurate electrocardiographic assessment of the QT interval: teach the tangent. Heart Rhythm 5(7):1015–1018. https://doi.org/10.1016/j.hrthm.2008.03.037

    Article  PubMed  Google Scholar 

  27. Poon K, Okin PM, Kligfield P (2005) Diagnostic performance of a computer-based ECG rhythm algorithm. J Electrocardiol 38(3):235–238. https://doi.org/10.1016/j.jelectrocard.2005.01.008

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Pieter G. Postema for his useful comments in preparing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthijs L. Becker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study, formal consent is not required.

Electronic supplementary material

ESM 1

(DOCX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heemskerk, C.P.M., Pereboom, M., van Stralen, K. et al. Risk factors for QTc interval prolongation. Eur J Clin Pharmacol 74, 183–191 (2018). https://doi.org/10.1007/s00228-017-2381-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-017-2381-5

Keywords

Navigation