Skip to main content

Advertisement

Log in

Application of physiologically based pharmacokinetic modeling to the prediction of drug-drug and drug-disease interactions for rivaroxaban

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Rivaroxaban is a direct oral anticoagulant with a large inter-individual variability. The present study is to develop a physiologically based pharmacokinetic (PBPK) model to predict several scenarios in clinical practice.

Methods

A whole-body PBPK model for rivaroxaban, which is metabolized by the cytochrome P450 (CYP) 3A4/5, 2J2 pathways and excreted via kidneys, was developed to predict the pharmacokinetics at different doses in healthy subjects and patients with hepatic or renal dysfunction. Hepatic clearance and drug-drug interactions (DDI) were estimated by in vitro in vivo extrapolation (IVIVE) based on parameters obtained from in vitro experiments. To validate the model, observed concentrations were compared with predicted concentrations, and the impact of special scenarios was investigated.

Results

The PBPK model successfully predicted the pharmacokinetics for healthy subjects and patients as well as DDIs. Sensitivity analysis shows that age, renal, and hepatic clearance are important factors affecting rivaroxaban pharmacokinetics. The predicted fold increase of rivaroxaban AUC values when combined administered with the inhibitors such as ketoconazole, ritonavir, and clarithromycin were 2.3, 2.2, and 1.3, respectively. When DDIs and hepatic dysfunction coexist, the fold increase of rivaroxaban exposure would increase significantly compared with one factor alone.

Conclusions

Our study using PBPK modeling provided a reasonable approach to evaluate exposure levels in special patients under special scenarios. Although further clinical study or real-life experience would certainly merit the current work, the modeling work so far would at least suggest caution of using rivaroxaban in complicated clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Capodanno D, Giacchi G, Tamburino C (2012) Novel drugs for oral anticoagulation pharmacotherapy. Expert Rev Cardiovasc Ther 10(4):473–488

    Article  CAS  PubMed  Google Scholar 

  2. Powell JR (2015) Are new oral anticoagulant dosing recommendations optimal for all patients? JAMA 313(10):1013–1014

    Article  CAS  PubMed  Google Scholar 

  3. Mueck W, Stampfuss J, Kubitza D, Becka M (2014) Clinical pharmacokinetic and pharmacodynamic profile of rivaroxaban. Clin Pharmacokinet 53(1):1–16

    Article  CAS  PubMed  Google Scholar 

  4. Kubitza D, Becka M, Zuehlsdorf M, Mueck W (2006) Effect of food, an antacid, and the H2 antagonist ranitidine on the absorption of BAY 59-7939 (rivaroxaban), an oral, direct factor Xa inhibitor, in healthy subjects. J Clin Pharmacol 46(5):549–558

    Article  CAS  PubMed  Google Scholar 

  5. Lang D, Freudenberger C, Weinz C (2009) In vitro metabolism of rivaroxaban, an oral, direct factor Xa inhibitor, in liver microsomes and hepatocytes of rats, dogs, and humans. Drug Metab Disposition: Biol Fate Chem 37(5):1046–1055

    Article  CAS  Google Scholar 

  6. Gnoth MJ, Buetehorn U, Muenster U, Schwarz T, Sandmann S (2011) In vitro and in vivo P-glycoprotein transport characteristics of rivaroxaban. J Pharmacol Exp Ther 338(1):372–380

    Article  CAS  PubMed  Google Scholar 

  7. Mueck W, Kubitza D, Becka M (2013) Co-administration of rivaroxaban with drugs that share its elimination pathways: pharmacokinetic effects in healthy subjects. Br J Clin Pharmacol 76(3):455–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kubitza D, Becka M, Mueck W, Halabi A, Maatouk H, Klause N, Lufft V, Wand DD, Philipp T, Bruck H (2010) Effects of renal impairment on the pharmacokinetics, pharmacodynamics and safety of rivaroxaban, an oral, direct factor Xa inhibitor. Br J Clin Pharmacol 70(5):703–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kubitza D, Roth A, Becka M, Alatrach A, Halabi A, Hinrichsen H, Mueck W (2013) Effect of hepatic impairment on the pharmacokinetics and pharmacodynamics of a single dose of rivaroxaban, an oral, direct factor Xa inhibitor. Br J Clin Pharmacol 76(1):89–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hartmanshenn C, Scherholz M, Androulakis IP (2016) Physiologically-based pharmacokinetic models: approaches for enabling personalized medicine. J Pharmacokinet Pharmacodyn 43(5):481–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou S, Yung Chan S, Cher Goh B, Chan E, Duan W, Huang M, McLeod HL (2005) Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs. Clin Pharmacokinet 44(3):279–304

    Article  CAS  PubMed  Google Scholar 

  12. Grillo JA, Zhao P, Bullock J, Booth BP, Lu M, Robie-Suh K, Berglund EG, Pang KS, Rahman A, Zhang L, Lesko LJ, Huang SM (2012) Utility of a physiologically-based pharmacokinetic (PBPK) modeling approach to quantitatively predict a complex drug-drug-disease interaction scenario for rivaroxaban during the drug review process: implications for clinical practice. Biopharm Drug Dispos 33(2):99–110

    Article  CAS  PubMed  Google Scholar 

  13. Poulin P, Theil FP (2000) A priori prediction of tissue:plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J Pharm Sci 89(1):16–35

    Article  CAS  PubMed  Google Scholar 

  14. Lu Y, Zhu J, Chen X, Li N, Fu F, He J, Wang G, Zhang L, Zheng Y, Qiu Z, Yu X, Han D, Wu L (2009) Identification of human UDP-glucuronosyltransferase isoforms responsible for the glucuronidation of glycyrrhetinic acid. Drug Metab Pharmacokinet 24(6):523–528

    Article  CAS  PubMed  Google Scholar 

  15. Weinz C, Schwarz T, Kubitza D, Mueck W, Lang D (2009) Metabolism and excretion of rivaroxaban, an oral, direct factor Xa inhibitor, in rats, dogs, and humans. Drug Metab Disposition: Biol Fate Chem 37(5):1056–1064

    Article  CAS  Google Scholar 

  16. Yu CY, Lo YH, Chiou WK (2003) The 3D scanner for measuring body surface area: a simplified calculation in the Chinese adult. Appl Ergon 34(3):273–278

    Article  PubMed  Google Scholar 

  17. Katori R (1979) Normal cardiac output in relation to age and body size. Tohoku J Exp Med 128(4):377–387

    Article  CAS  PubMed  Google Scholar 

  18. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16(1):31–41

    Article  CAS  PubMed  Google Scholar 

  19. Fraschini F, Scaglione F, Demartini G (1993) Clarithromycin clinical pharmacokinetics. Clin Pharmacokinet 25(3):189–204

    Article  CAS  PubMed  Google Scholar 

  20. Huang YC, Colaizzi JL, Bierman RH, Woestenborghs R, Heykants J (1986) Pharmacokinetics and dose proportionality of ketoconazole in normal volunteers. Antimicrob Agents Chemother 30(2):206–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang K, D'Argenio DZ, Acosta EP, Sheth AN, Delille C, Lennox JL, Kerstner-Wood C, Ofotokun I (2014) Integrated population pharmacokinetic/viral dynamic modelling of lopinavir/ritonavir in HIV-1 treatment-naive patients. Clin Pharmacokinet 53(4):361–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jiang J, Hu Y, Zhang J, Yang J, Mueck W, Kubitza D, Bauer RJ, Meng L, Hu P (2010) Safety, pharmacokinetics and pharmacodynamics of single doses of rivaroxaban - an oral, direct factor Xa inhibitor - in elderly Chinese subjects. Thromb Haemost 103(1):234–241

    Article  CAS  PubMed  Google Scholar 

  23. Guo H, Liu C, Li J, Zhang M, Hu M, Xu P, Liu L, Liu X (2013) A mechanistic physiologically based pharmacokinetic-enzyme turnover model involving both intestine and liver to predict CYP3A induction-mediated drug-drug interactions. J Pharm Sci 102(8):2819–2836

    Article  CAS  PubMed  Google Scholar 

  24. Runge C (1895) Über die numerische Auflösung von Differentialgleichungen. Math Annalen 46:167–178

    Article  Google Scholar 

  25. Kutta W (1901) Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Z Math Phys 46:435–453

    Google Scholar 

  26. Kubitza D, Becka M, Roth A, Mueck W (2013) The influence of age and gender on the pharmacokinetics and pharmacodynamics of rivaroxaban--an oral, direct factor Xa inhibitor. J Clin Pharmacol 53(3):249–255

    Article  PubMed  Google Scholar 

  27. Zhao X, Sun P, Zhou Y, Liu Y, Zhang H, Mueck W, Kubitza D, Bauer RJ, Zhang H, Cui Y (2009) Safety, pharmacokinetics and pharmacodynamics of single/multiple doses of the oral, direct factor Xa inhibitor rivaroxaban in healthy Chinese subjects. Br J Clin Pharmacol 68(1):77–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Douxfils J, Mullier F, Loosen C, Chatelain C, Chatelain B, Dogne JM (2012) Assessment of the impact of rivaroxaban on coagulation assays: laboratory recommendations for the monitoring of rivaroxaban and review of the literature. Thromb Res 130(6):956–966

    Article  CAS  PubMed  Google Scholar 

  29. Grillo JA, Bullock JM, Mehrotra N, Garnett C, Zhao P (2010) US Food and Drug Administration, Center for Drug Evaluation and Research. Clinical pharmacology and biopharmaceutics review(s). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/022406Orig022401s022000ClinPharmR.pdf

  30. Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 13(4):407–484

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ruijuan Xu developed the model and performed the validation. All the authors contributed the discussion of results. Ruijuan Xu wrote the first draft. All the authors reviewed the data and approved the final version of submission.

Corresponding authors

Correspondence to Ruijuan Xu, Weihong Ge or Qing Jiang.

Ethics declarations

Conflict of interest

This work was supported by the Key Research and Development program of Jiangsu Province of China (No. BE2016608). We thank Professor Jin Yang from China Pharmaceutical University for providing SimCYP® software (Version 14.0).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, R., Ge, W. & Jiang, Q. Application of physiologically based pharmacokinetic modeling to the prediction of drug-drug and drug-disease interactions for rivaroxaban. Eur J Clin Pharmacol 74, 755–765 (2018). https://doi.org/10.1007/s00228-018-2430-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-018-2430-8

Keywords

Navigation