Skip to main content
Log in

Aldosterone Reduces Crypt Colon Permeability during Low-Sodium Adaptation

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Fluid and electrolyte absorption by colonic crypts depends on the transport properties of crypt cellular and paracellular routes and of the pericryptal sheath. As a low-Na+ diet increases aldosterone and angiotensin II secretion, either hormone could affect absorption. Control and adrenalectomized (ADX) Sprague-Dawley rats were kept at a high-NaCl (HS) diet and then switched to low-NaCl (LS) diet for 3 days. Aldosterone or angiotensin II plasma concentrations were maintained using implanted osmotic mini-pumps. The extracellular Na+ concentration in isolated rat distal colonic mucosa was determined by confocal microscopy using a low-affinity Na+-sensitive fluorescent dye (Sodium red, and Na+-insensitive BODIPY) bound to polystyrene beads. Crypt permeability to FITC-labelled dextran (10 kDa) was monitored by its rate of escape from the crypt lumen into the pericryptal space. Mucosal ion permeability was estimated by transepithelial electrical resistance (TER) and amiloride-sensitive short-circuit current (SCC). The epithelial Na+ channel, ENaC, was determined by immunolocalization. LS diet decreased crypt wall permeability to dextran by 10-fold and doubled TER. Following ADX, aldosterone decreased crypt wall dextran permeability, increased TER, increased Na+ accumulation in the pericryptal sheath and ENaC expression even in HS. Infusion of angiotensin II to ADX rats did not reverse the effects of aldosterone deprivation. These findings indicate that aldosterone alone is responsible for both the increase in Na+ absorption and the decreased paracellular and pericryptal sheath permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Similar content being viewed by others

References

  • Abramoff M.D., Magelhaes P.J., Ram S.J. 2004. Image Processing with ImageJ. Biophotonics International 11:36–42

    Google Scholar 

  • Asher C., Wald H., Rossier B.C., Garty H. 1996. Aldosterone-induced increase in the abundance of Na+ channel subunits. Am. J Physiol. 271:C605–C611

    CAS  PubMed  Google Scholar 

  • Barlet-Bas C., Khadouri C., Marsy S. Doucet A. 1988. Sodium-independent in vitro induction of Na+ K+-ATPase by aldosterone in renal target cells: permissive effect of triiodothyronine. Proc. Natl. Acad. Sci. USA 85:1707–1711

    CAS  PubMed  Google Scholar 

  • Campbell D.J., Habener J.F. 1986. Angiotensinogen gene is expressed and differentially regulated in multiple tissues of the rat. J. Clin. Invest. 78:31–39

    CAS  PubMed  Google Scholar 

  • Campbell S.E., Janicki J.S., Weber K.T. 1995. Temporal differences in fibroblast proliferation and phenotype expression in response to chronic administration of angiotensin II or aldosterone. J. Moll. Cell. Cardiol. 27:1545–1560

    Article  CAS  PubMed  Google Scholar 

  • Colegio O.R., Van Itallie C., Rahner C., Anderson J.M. 2003. Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am. J. Physiol. 284:C1346–C1354

    CAS  Google Scholar 

  • Cristià E., Afzal I., Pérez-Bosque A., Amat C., Moretó M., Naftalin R.J. 2005. Pericryptal colon fibrosis induced by low sodium diets is mediated by aldosterone. J. Membrane Biol. 206:53–59

    Google Scholar 

  • De los Rios A.D., Labajos M., Manteca A., Morell M., Souviron A. 1980. Stimulatory action of angiotensin II on water and electrolyte transport by the proximal colon of the rat. J. Endocrinol. 86:35–43

    Google Scholar 

  • Dolman D., Edmonds C.J., Salas-Coll C. 1978. Effect of aldosterone on lithium permeability of rat colon mucosa. Experientia 34:1174–1175

    Google Scholar 

  • Due C., Farman N., Canessa C., Bonvalet J., Rossier B.C. 1994. Cell-specific expression of epithelial sodium channel α,β, and γ subunits in aldosterone-responsive epithelia from the rat: localization y in situ hybridization and immunocytochemistry. J. Cell Biol. 127:1907–1921

    Article  CAS  PubMed  Google Scholar 

  • Fardella C.E., Mosso L. 2002. Primary aldosteronism. Clin. Lab. 48:181–190

    CAS  PubMed  Google Scholar 

  • Fromm M., Hegel U. 1978. Segmental heterogeneity of epithelial transport in rat large intestine. Pfluegers Arch. 378:71–78

    Article  CAS  Google Scholar 

  • Fukushima K., Naito H., Funayama Y., Yonezawa H., Haneda S., Shibata C., Sasaki I. 2004. In vivo induction of prostasin mRNA in colonic epithelial cells by dietary sodium depletion and aldosterone infusion in rats. J. Gastroenterol. 39:940–947

    Article  CAS  PubMed  Google Scholar 

  • Funder J.W., Pearce P.T., Smith R., Smith A.I. 1988. Mineralcorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science 242:583–585

    CAS  PubMed  Google Scholar 

  • Garty H., Benos D.J. 1988. Characteristics and regulatory mechanisms of the amiloride-blockable Na+ channel. Physiol. Rev. 68:309–373

    CAS  PubMed  Google Scholar 

  • Hirasawa K., Sato Y., Hosoda Y., Yamamoto T., Hanai H. 2002. Immunohistochemical localization of angiotensin II receptor and local renin-angiotensin system in human colonic mucosa. J. Histochem. Cytochem. 50:275–282

    CAS  PubMed  Google Scholar 

  • Horster M., Fabritius J., Buttner M., Maul R., Weekwerth P. 1994. Colonic-crypt-derived epithelia express induced ion transport differentiation in monolayer cultures on permeable matrix substrata. Pfluegers Arch 426:110–120

    Article  CAS  Google Scholar 

  • Jayaraman S., Song Y., Vetrivel L., Shankar L., Verkman A.S. 2001. Non-invasive fluorescence measurement of salt concentration in the airway surface liquid. J. Clin. Invest. 107:317–324

    CAS  PubMed  Google Scholar 

  • Klahr S., Morrissey J.J. 1997. Comparative study of ACE inhibitors and angiotensin II receptor antagonists in interstitial scarring. Kidney Int. Suppl. 63:S111–S114

    CAS  PubMed  Google Scholar 

  • Molteni A., Moulder J.E., Cohen E.F. 2000. Control of radiation-induced pneumopathy and lung fibrosis by angiotensin-converting enzyme inhibitors and an angiotensin II type 1 receptor blocker. Int. J. Radial Biol. 76:523–532

    CAS  Google Scholar 

  • Naftalin R.J. 2004. Alterations in colonic barrier function caused by a low sodium diet or ionizing radiation. J. Environ. Pathol. Toxicol. Oncol. 23:79–97

    CAS  Google Scholar 

  • Naftalin R.J., Pedley 1999. Regional crypt function in rat large intestine in relation to fluid absorption and growth of the pericryptal sheath. J. Physiol. 514:211–227

    CAS  PubMed  Google Scholar 

  • Naftalin R.J., Zammit P.S., Pedley K.C. 1999. Regional differences in rat large intestinal crypt function in relation to dehydrating capacity in vivo. J. Physiol. 514:201–210

    CAS  PubMed  Google Scholar 

  • Narikiyo T., Kitamura K., Adachi M., Miyoshi T., Iwashita K., Shiraishi N., Nonoguchi H., Chen L., Chai K.X., Chao J., Tomita K. 2002. Regulation of prostasin by aldosterone in the kidney. J. Clin. Invest. 109:401–408

    Article  CAS  PubMed  Google Scholar 

  • Paul M., Wagner J., Dzau V.J. 1993. Gene expression of the renin-angiotensin system in human tissue. Quantitative analysis by the polymerase chain reaction. J. Clin. Invest. 91:2058–2064

    CAS  PubMed  Google Scholar 

  • Peart W.S. 1969. The renin-angiotensin system: a history and review of the renin-angiotensin system. Proc. R. Soc. Lond. B 173:317–325

    CAS  PubMed  Google Scholar 

  • Rasband, W.S. 1997–2005. Image J. U. S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/

  • Schulzke J.D., Fromm M., Hegel U. 1986. Epithelial and subepithelial resistance of rat large intestine: segmental differences, effect of stripping, time course, and action of aldosterone. Pfluegers Arch. 407:632–637

    Article  CAS  Google Scholar 

  • Shlyonsky V., Goolaerts A., Van Beneden R., Sariban-Sohraby S. 2005. Differentiation of epithelial Na+ channel function. J. Biol. Chem. 280:24181–24187

    Article  CAS  PubMed  Google Scholar 

  • Stanton B., Giebisch G., Klein-Robbenhaar G., DeFronzo R., Giebisch G. Wade J. 1985. Effects of adrenalectomy and chronic adrenal corticosteroid replacement on potassium transport in rat kidney. J. Clin Invest. 75:1317–1326

    CAS  PubMed  Google Scholar 

  • Swaney J.S., Roth D.M., Olson E.R., Naugle J.E., Meszaros J.G., Insel P.A. 2005. Inhibition of cardiac myofibroblast formation and collagen synthesis by activation and overexpression of adenylyl cyclase. Proc. Natl. Acad. Sci., USA 102:437–442

    Article  CAS  PubMed  Google Scholar 

  • Thiagarajah J.R., Griffiths N.M., Pedley K.C., Naftalin R.J. 2002. Evidence for modulation of pericryptal sheath myofibroblasts in rat descending colon by transforming growth factor β and angiotensin II. Gastroenterology 2:4–15

    PubMed  Google Scholar 

  • Thiagarajah J.R., Jayaraman S., Naftalin R.J., Verkman A.S. 2001a. In vivo fluorescence measurement of Na+ concentration in the pericryptal space of mouse descending colon. Am. J. Physiol. 281:C1898–C1903

    CAS  Google Scholar 

  • Thiagarajah J.R., Pedley K.C., Naftalin R.J. 2001b. Evidence of amiloride-sensitive fluid absorption in rat descending colonic crypts from fluorescence recovery of FITC-labeled dextran after photobleaching. J. Physiol. 536:541–553

    Article  CAS  Google Scholar 

  • Tsuruda T., Kato J., Cao Y.N., Hatakeyama K., Masuyama H., Imamura T., Kitamura K., Asada Y., Eto T. 2004. Adrenomedullin induces matrix metalloproteinase-2 activity in rat aortic adventitial fibroblasts. Biochem. Biophys. Res. Commun. 325:80–84

    Article  CAS  PubMed  Google Scholar 

  • Tsuruda T., Kato J., Hatakeyama K., Masuyama H., Cao Y.N., Imamura T., Kitamura K., Asada Y., Eto T. 2005. Antifibrotic effect of adrenomedullin on coronary adventitia in angiotensin II-induced hypertensive rats. Cardiovasc. Res. 65:921–929

    Article  CAS  PubMed  Google Scholar 

  • Weber K.T. 1997. Fibrosis, a common pathway to organ failure: angiotensin II and tissue repair. Semin. Nephrol. 17:467–491

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by projects BFI2003-05124 (Ministerio de Ciencia y Tecnología, Spain) and 2001SGR0142 (Generalitat de Catalunya, Spain) and the Wellcome Trust, UK. We are grateful to Dr. Carme Villà for plasma ion determinations and the support of the Confocal Service and the ICP-OES Service, Serveis Científicotècnics, Universitat de Barcelona. E.C. was recipient of a grant from MEC (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Moretó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moretó, M., Cristià, E., Pérez-Bosque, A. et al. Aldosterone Reduces Crypt Colon Permeability during Low-Sodium Adaptation. J Membrane Biol 206, 43–51 (2005). https://doi.org/10.1007/s00232-005-0772-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0772-5

Keywords

Navigation