Skip to main content
Log in

DNA-Binding, Photocleavage, and Photodynamic Anti-cancer Activities of Pyridyl Corroles

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The DNA-binding, photocleavage, and antitumor activity of three free base pyridyl corroles 1, 2, and 3 have been investigated. The binding affinity toward CT-DNA decreases with increasing number of pentafluorophenyl, whereas the photocleavage activity toward pBR322 DNA becomes more efficient. Singlet oxygen was demonstrated as active species responsible for DNA cleavage. These corroles exhibited high cytotoxicity against three tested cancer cells (Hela, HapG2, and A549) and the cytotoxicity could be further enhanced under irradiation. Intracellular reactive oxygen species level was also monitored using HeLa Cells upon the combined treatment of corroles and light. These corroles could be absorbed by HeLa cells at low concentration. They can induce the decrease of mitochondrial membrane potential and apoptosis of tumor cells under irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agadjanian H, Weaver JJ, Mahammed A, Rentsendorj A, Bass S, Kim J, Dmochowski IJ, Margalit R, Gray HB, Gross Z, Medina-Kauwe LK (2006) Specific delivery of corroles to cells via noncovalent conjugates with viral proteins. Pharm Res Dordr 23:367–377

    Article  CAS  Google Scholar 

  • Allison RR, Bagnato VS, Cuenca R, Downie GH, Sibata CH (2006) The future of photodynamic therapy in oncology. Future Oncol 2:53–71

    Article  CAS  PubMed  Google Scholar 

  • Alvarez MG, Prucca C, Milanesio ME, Durantini EN, Rivarola V (2006) Photodynamic activity of a new sensitizer derived from porphyrin-C60 dyad and its biological consequences in a human carcinoma cell line. Int J Biochem Cell B 38:2092–2101

    Article  CAS  Google Scholar 

  • Barata JFB, Zamarrón A, Neves MGPMS, Faustino MAF, Tomé AC, Cavaleiro JAS, Röder B, Juarranz Á, Sanz-Rodríguez F (2015) Photodynamic effects induced by meso-tris(pentafluorophenyl)corrole and its cyclodextrin conjugates on cytoskeletal components of HeLa cells. Eur J Med Chem 92:135–144

    Article  CAS  PubMed  Google Scholar 

  • Barton JK, Raphael AL (1984) Photoactivated stereospecific cleavage of double-helical DNA by cobalt(III) complexes. J Am Chem Soc 106:2466–2468

    Article  CAS  Google Scholar 

  • Castedo M, Hirsch T, Susin SA, Zamzami N, Marchetti P, Macho A, Kroemer G (1996) Sequential acquisition of mitochondrial and plasma membrane alterations during early lymphocyte apoptosis. J Immunol 157:512–521

    CAS  PubMed  Google Scholar 

  • Chang CK, Kong P-W, Liu H-Y, Yeung L-L, Koon H-K, Mak N-K (2006) Synthesis and photodynamic activities of modified corrole derivatives on nasopharyngeal carcinoma cells. Proc SPIE 6139:613915

    Article  Google Scholar 

  • Dougherty TJ (1996) A brief history of clinical photodynamic therapy development at Roswell Park Cancer Institute. Laser Med Surg 14:219–221

    CAS  Google Scholar 

  • Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer I 90:889–905

    Article  CAS  Google Scholar 

  • Ethirajan M, Chen Y, Joshi P, Pandey RK (2011) The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem Soc Rev 40:340–362

    Article  CAS  PubMed  Google Scholar 

  • Fu B, Huang J, Ren L, Weng X, Zhou Y, Du Y, Wu X, Zhou X, Yang G (2007) Cationic corrole derivatives: a new family of G-quadruplex inducing and stabilizing ligands. Chem Commun 31:3264–3266

    Article  Google Scholar 

  • Fuchs J, Thiele J (1998) The role of oxygen in cutaneous photodynamic therapy. Free Radic Biol Med 24:835–847

    Article  CAS  PubMed  Google Scholar 

  • Gershman Z, Goldberg I, Gross Z (2007) DNA binding and catalytic properties of positively charged corroles. Angew Chem Int Edn 46:4320–4324

    Article  CAS  Google Scholar 

  • Ghosh S, Ucer KB, D’Agostino R Jr, Grant K, Sirintrapun J, Thomas MJ, Hantgan R, Bharadwaj M, Gmeiner WH (2014) Non-covalent assembly of meso-tetra-4-pyridyl porphine with single-stranded DNA to form nano-sized complexes with hydrophobicity-dependent DNA release and anti-tumor activity. Nanomedicine-US 10:451–461

    CAS  Google Scholar 

  • Gross Z, Mahammed A, Abdales M, Weaver JJ, Gray HB (2003) Bioinorganic chemistry of corrole metal complexes: interactions with proteins and cells. J Inorg Biochem 96:140

    Article  Google Scholar 

  • Gryko DT, Koszarna B (2004) Refined synthesis of meso-substituted trans-A[2]B-corroles bearing electron-withdrawing groups. Synthesis 13:2205–2209

    Article  Google Scholar 

  • Huang J-T, Wang X-L, Zhang Y, Mahmood M, Huang Y-Y, Ying X, Ji L-N, Liu H-Y (2013) DNA binding and nuclease activity of a water-soluble sulfonated manganese(III) corrole. Transit Met Chem 38:283–289

    Article  CAS  Google Scholar 

  • Hwang JY, Lubow J, Chu D, Ma J, Agadjanian H, Sims J, Gray HB, Gross Z, Farkas DL, Medina-Kauwe LK (2011) A mechanistic study of tumor-targeted corrole toxicity. Mol Pharm 8:2233–2243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang JY, Lubow DJ, Chu D, Sims J, Alonso-Valenteen F, Gray HB, Gross Z, Farkas DL, Medina-Kauwe LK (2012) Photoexcitation of tumor-targeted corroles induces singlet oxygen-mediated augmentation of cytotoxicity. J Control Release 163:368–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K, Ohmura M, Naka K, Hosokawa K, Ikeda Y, Suda T (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12:446–451

    Article  CAS  PubMed  Google Scholar 

  • Karunakaran SC, Babu PSS, Madhuri B, Marydasan B, Paul AK, Nair AS, Rao KS, Srinivasan A, Chandrashekar TK, Rao CM, Pillai R, Ramaiah D (2013) In vitro demonstration of apoptosis mediated photodynamic activity and NIR nucleus imaging through a novel porphyrin. ACS Chem Biol 8:127–132

    Article  CAS  PubMed  Google Scholar 

  • Kiesslich T, Tortik N, Pichler M, Neureiter D, Plaetzer K (2013) Apoptosis in cancer cells induced by photodynamic treatment: a methodological approach. J Porphyr Phthalocyanines 17:197–209

    Article  CAS  Google Scholar 

  • Kunz L, Stark G (1998) Photofrin II sensitized modifications of ion transport across the plasma membrane of an epithelial cell line: I. Electrical measurements at the whole-cell level. J Membr Biol 166:179–185

    Article  CAS  PubMed  Google Scholar 

  • Lemasters JJ, Qian T, He L, Kim J-S, Elmore SP, Cascio WE, Brenner DA (2002) Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxid Redox Sign 4:769–781

    Article  CAS  Google Scholar 

  • Lim P, Mahammed A, Okun Z, Saltsman I, Gross Z, Gray HB, Termini J (2012) Differential cytostatic and cytotoxic action of metallocorroles against human cancer cells: potential platforms for anticancer drug development. Chem Res Toxicol 25:400–409

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Liu HY, Shi L, Wang XL, Ying X, Zhang L, Ji LN, Zang LQ, Chang CK (2011) DNA cleavage mediated by water-soluble manganese corrole. Chin Chem Lett 22:101–104

    Article  CAS  Google Scholar 

  • Ma H, Zhang M, Zhang D, Huang R, Zhao Y, Yang H, Liu Y, Weng X, Zhou Y, Deng M, Xu L, Zhou X (2010) Pyridyl-substituted corrole isomers: synthesis and their regulation to G-quadruplex structures. Chem Asian J 5:114–122

    Article  CAS  PubMed  Google Scholar 

  • Mazzaglia A, Bondì ML, Scala A, Zito F, Barbieri G, Crea F, Vianelli G, Mineo P, Fiore T, Pellerito C, Pellerito L, Costa MA (2013) Supramolecular assemblies based on complexes of nonionic amphiphilic cyclodextrins and a meso-tetra(4-sulfonatophenyl)porphine tributyltin(IV) Derivative: potential nanotherapeutics against melanoma. Biomacromolecules 14:3820–3829

    Article  CAS  PubMed  Google Scholar 

  • Paolesse R, Nardis S, Sagone F, Khoury RG (2001) Synthesis and functionalization of meso-aryl-substituted corroles. J Org Chem 66:550–556

    Article  CAS  PubMed  Google Scholar 

  • Pasternack RF, Gibbs EJ, Villafranca JJ (1983) Interactions of porphyrins with nucleic acids. Biochemistry-US 22:5409–5417

    Article  CAS  Google Scholar 

  • Saraste A, Pulkki K (2000) Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 45:528–537

    Article  CAS  PubMed  Google Scholar 

  • Schmitt J, Heitz V, Sour A, Bolze F, Ftouni H, Nicoud J-F, Flamigni L, Ventura B (2015) Diketopyrrolopyrrole-porphyrin conjugates with high two-photon absorption and singlet oxygen generation for two-photon photodynamic therapy. Angew Chem Int Edn 54:169–173

    Article  CAS  Google Scholar 

  • Silveira LR, Pereira-Da-Silva L, Juel C, Hellsten Y (2003) Formation of hydrogen peroxide and nitric oxide in rat skeletal muscle cells during contractions. Free Radic Biol Med 35:455–464

    Article  CAS  PubMed  Google Scholar 

  • Sims JD, Hwang JY, Wagner S, Alonso-Valenteen F, Hanson C, Taguiam JM, Polo R, Harutyunyan I, Karapetyan G, Sorasaenee K, Ibrahim A, Marban E, Moats R, Gray HB, Gross Z, Medina-Kauwe LK (2015) A corrole nanobiologic elicits tissue-activated MRI contrast enhancement and tumor-targeted toxicity. J Control Release 217:92–101

    Article  CAS  PubMed  Google Scholar 

  • Thomas AP, Saneesh Babu PS, Asha Nair S, Ramakrishnan S, Ramaiah D, Chandrashekar TK, Srinivasan A, Radhakrishna Pillai M (2012) meso-tetrakis(p-sulfonatophenyl)N-confused porphyrin tetrasodium salt: a potential sensitizer for photodynamic therapy. J Med Chem 55:5110–5120

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, He Q-Y, Sun RW-Y, Che C-M, Chiu J-F (2005) Gold(III) porphyrin 1a induced apoptosis by mitochondrial death pathways related to reactive oxygen species. Cancer Res 65:11553–11564

    Article  CAS  PubMed  Google Scholar 

  • Wezgowiec J, Derylo M, Teissie J, Orio J, Rols M-P, Kulbacka J, Saczko J, Kotulska M (2013) Electric field-assisted delivery of photofrin to human breast carcinoma cells. J Membr Biol 246:725–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson BC, Patterson MS (1986) The physics of photodynamic therapy. Phys Med Biol 31:327–360

    Article  CAS  PubMed  Google Scholar 

  • Wolfe A, Shimer GH, Meehan T (1987) Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry-US 26:6392–6396

    Article  CAS  Google Scholar 

  • Zhang Y, Wang Q, Wen J, Wang X, Mahmood MHR, Ji L, Liu H (2013) DNA binding and oxidative cleavage by a water-soluble carboxyl manganese(III) corrole. Chin J Chem 31:1321–1328

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NNSFC) under Grant (Nos: 21371059, 21376099), the High-Level Personnel Project of Guangdong Province in 2013, and the Joint Natural Science Fund of the Department of Science and Technology and the First Affiliated Hospital of Guangdong Pharmaceutical University (No. GYFYLH201315).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Yang Liu, Yun-Jun Liu or Xin-Yan Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, ZH., Liu, HY., Zhou, R. et al. DNA-Binding, Photocleavage, and Photodynamic Anti-cancer Activities of Pyridyl Corroles. J Membrane Biol 249, 419–428 (2016). https://doi.org/10.1007/s00232-016-9879-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-016-9879-0

Keywords

Navigation