Skip to main content
Erschienen in: Neuroradiology 8/2015

01.08.2015 | Head and Neck Radiology

Analysis of metal artifact reduction tools for dental hardware in CT scans of the oral cavity: kVp, iterative reconstruction, dual-energy CT, metal artifact reduction software: does it make a difference?

verfasst von: An De Crop, Jan Casselman, Tom Van Hoof, Melissa Dierens, Elke Vereecke, Nicolas Bossu, Jaime Pamplona, Katharina D’Herde, Hubert Thierens, Klaus Bacher

Erschienen in: Neuroradiology | Ausgabe 8/2015

Einloggen, um Zugang zu erhalten

Abstract

Introduction

Metal artifacts may negatively affect radiologic assessment in the oral cavity. The aim of this study was to evaluate different metal artifact reduction techniques for metal artifacts induced by dental hardware in CT scans of the oral cavity.

Methods

Clinical image quality was assessed using a Thiel-embalmed cadaver. A Catphan phantom and a polymethylmethacrylate (PMMA) phantom were used to evaluate physical-technical image quality parameters such as artifact area, artifact index (AI), and contrast detail (IQFinv). Metal cylinders were inserted in each phantom to create metal artifacts. CT images of both phantoms and the Thiel-embalmed cadaver were acquired on a multislice CT scanner using 80, 100, 120, and 140 kVp; model-based iterative reconstruction (Veo); and synthesized monochromatic keV images with and without metal artifact reduction software (MARs). Four radiologists assessed the clinical image quality, using an image criteria score (ICS).

Results

Significant influence of increasing kVp and the use of Veo was found on clinical image quality (p = 0.007 and p = 0.014, respectively). Application of MARs resulted in a smaller artifact area (p < 0.05). However, MARs reconstructed images resulted in lower ICS.

Conclusion

Of all investigated techniques, Veo shows to be most promising, with a significant improvement of both the clinical and physical-technical image quality without adversely affecting contrast detail. MARs reconstruction in CT images of the oral cavity to reduce dental hardware metallic artifacts is not sufficient and may even adversely influence the image quality.
Literatur
1.
Zurück zum Zitat Geets X et al (2005) Inter-observer variability in the delineation of pharyngo-laryngeal tumor, parotid glands and cervical spinal cord: comparison between CT-scan and MRI. Radiother Oncol 77(1):25–31CrossRefPubMed Geets X et al (2005) Inter-observer variability in the delineation of pharyngo-laryngeal tumor, parotid glands and cervical spinal cord: comparison between CT-scan and MRI. Radiother Oncol 77(1):25–31CrossRefPubMed
2.
Zurück zum Zitat Barrett JF, Keat N (2004) Artifacts in CT: recognition and avoidance. Radiographics 24(6):1679–1691CrossRefPubMed Barrett JF, Keat N (2004) Artifacts in CT: recognition and avoidance. Radiographics 24(6):1679–1691CrossRefPubMed
3.
Zurück zum Zitat Lee MJ et al (2007) Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multidetector CT. Radiographics 27(3):791–803CrossRefPubMed Lee MJ et al (2007) Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multidetector CT. Radiographics 27(3):791–803CrossRefPubMed
4.
Zurück zum Zitat Fiala TGS, Novelline RA, Yaremchuk MJ (1993) Comparison of Ct imaging artifacts from craniomaxillofacial internal-fixation devices. Plast Reconstr Surg 92(7):1227–1232PubMed Fiala TGS, Novelline RA, Yaremchuk MJ (1993) Comparison of Ct imaging artifacts from craniomaxillofacial internal-fixation devices. Plast Reconstr Surg 92(7):1227–1232PubMed
5.
Zurück zum Zitat Haramati N et al (1994) Ct scans through metal scanning technique versus hardware composition. Comput Med Imaging Graph 18(6):429–434CrossRefPubMed Haramati N et al (1994) Ct scans through metal scanning technique versus hardware composition. Comput Med Imaging Graph 18(6):429–434CrossRefPubMed
6.
Zurück zum Zitat Moon SG et al (2008) Metal artifact reduction by the alteration of technical factors in multidetector computed tomography: a 3-Dimensional quantitative assessment. J Comput Assist Tomogr 32(4):630–633CrossRefPubMed Moon SG et al (2008) Metal artifact reduction by the alteration of technical factors in multidetector computed tomography: a 3-Dimensional quantitative assessment. J Comput Assist Tomogr 32(4):630–633CrossRefPubMed
7.
Zurück zum Zitat Lee IS et al (2007) A pragmatic protocol for reduction in the metal artifact and radiation dose in multislice computed tomography of the spine: cadaveric evaluation after cervical pedicle screw placement. J Comput Assist Tomogr 31(4):635–641CrossRefPubMed Lee IS et al (2007) A pragmatic protocol for reduction in the metal artifact and radiation dose in multislice computed tomography of the spine: cadaveric evaluation after cervical pedicle screw placement. J Comput Assist Tomogr 31(4):635–641CrossRefPubMed
9.
Zurück zum Zitat Stradiotti P et al (2009) Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: state of the art. Eur Spine J 18:S102–S108CrossRef Stradiotti P et al (2009) Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: state of the art. Eur Spine J 18:S102–S108CrossRef
10.
Zurück zum Zitat Link TM et al (2000) CT of metal implants: reduction of artifacts using an extended CT scale technique. J Comput Assist Tomogr 24(1):165–172CrossRefPubMed Link TM et al (2000) CT of metal implants: reduction of artifacts using an extended CT scale technique. J Comput Assist Tomogr 24(1):165–172CrossRefPubMed
11.
Zurück zum Zitat Funama Y et al (2015) A newly-developed metal artifact reduction algorithm improves the visibility of oral cavity lesions on 320-MDCT volume scans. Physica Med-Eur J Med Phys 31(1):66–71CrossRef Funama Y et al (2015) A newly-developed metal artifact reduction algorithm improves the visibility of oral cavity lesions on 320-MDCT volume scans. Physica Med-Eur J Med Phys 31(1):66–71CrossRef
12.
Zurück zum Zitat Zhang D, Li XH, Liu B (2011) Objective characterization of GE Discovery CT750 HD scanner: gemstone spectral imaging mode. Med Phys 38(3):1178–1188CrossRefPubMed Zhang D, Li XH, Liu B (2011) Objective characterization of GE Discovery CT750 HD scanner: gemstone spectral imaging mode. Med Phys 38(3):1178–1188CrossRefPubMed
13.
Zurück zum Zitat Lee YH et al (2012) Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software. Eur Radiol 22(6):1331–1340CrossRefPubMed Lee YH et al (2012) Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software. Eur Radiol 22(6):1331–1340CrossRefPubMed
14.
Zurück zum Zitat Wang Y et al (2013) Metal artifacts reduction using monochromatic images from spectral CT: evaluation of pedicle screws in patients with scoliosis. Eur J Radiol 82(8):E360–E366CrossRefPubMed Wang Y et al (2013) Metal artifacts reduction using monochromatic images from spectral CT: evaluation of pedicle screws in patients with scoliosis. Eur J Radiol 82(8):E360–E366CrossRefPubMed
15.
Zurück zum Zitat Lewis M, Reid K, Toms AP (2013) Reducing the effects of metal artefact using high keV monoenergetic reconstruction of dual energy CT (DECT) in hip replacements. Skelet Radiol 42(2):275–282CrossRef Lewis M, Reid K, Toms AP (2013) Reducing the effects of metal artefact using high keV monoenergetic reconstruction of dual energy CT (DECT) in hip replacements. Skelet Radiol 42(2):275–282CrossRef
16.
Zurück zum Zitat Thiel W (2002) Ergänzung für die Konservierung ganze Leichen nach W. Thiel Annals Anat 184:267–269CrossRef Thiel W (2002) Ergänzung für die Konservierung ganze Leichen nach W. Thiel Annals Anat 184:267–269CrossRef
17.
Zurück zum Zitat Thiel W (1992) Die Konservierung ganzer Leichen in natürlichen Farben. Ann Anat 174:185–195CrossRefPubMed Thiel W (1992) Die Konservierung ganzer Leichen in natürlichen Farben. Ann Anat 174:185–195CrossRefPubMed
18.
Zurück zum Zitat Lin XZ et al (2011) High-definition CT gemstone spectral imaging of the brain: initial results of selecting optimal monochromatic image for beam-hardening artifacts and image noise reduction. J Comput Assist Tomogr 35(2):294–297CrossRefPubMed Lin XZ et al (2011) High-definition CT gemstone spectral imaging of the brain: initial results of selecting optimal monochromatic image for beam-hardening artifacts and image noise reduction. J Comput Assist Tomogr 35(2):294–297CrossRefPubMed
19.
Zurück zum Zitat van der Schaaf I et al (2006) Minimizing clip artifacts in multi CT angiography of clipped patients. Am J Neuroradiol 27(1):60–66PubMed van der Schaaf I et al (2006) Minimizing clip artifacts in multi CT angiography of clipped patients. Am J Neuroradiol 27(1):60–66PubMed
20.
Zurück zum Zitat Thijssen M, Bijkerk K, van der Burgth R (1998) Manual contrast-detail phantom CDRAD type 2.0. Project quality assurance in radiology. Department of Radiology, University Hospital Nijmegen, St. Radboud, The Netherlands Thijssen M, Bijkerk K, van der Burgth R (1998) Manual contrast-detail phantom CDRAD type 2.0. Project quality assurance in radiology. Department of Radiology, University Hospital Nijmegen, St. Radboud, The Netherlands
21.
Zurück zum Zitat AAPM report no.39 (1993) Specification and acceptance testing of computed tomography scanners. AAPM AAPM report no.39 (1993) Specification and acceptance testing of computed tomography scanners. AAPM
22.
Zurück zum Zitat Samei E et al (2005) Assessment of display performance for medical imaging systems: executive summary of AAPM TG18 report. Med Phys 32(4):1205–1225CrossRefPubMed Samei E et al (2005) Assessment of display performance for medical imaging systems: executive summary of AAPM TG18 report. Med Phys 32(4):1205–1225CrossRefPubMed
23.
Zurück zum Zitat Viner M et al (2013) Liver SULmean at FDG PET/CT: interreader agreement and impact of placement of volume of interest. Radiology 267(2):596–601CrossRefPubMed Viner M et al (2013) Liver SULmean at FDG PET/CT: interreader agreement and impact of placement of volume of interest. Radiology 267(2):596–601CrossRefPubMed
24.
Zurück zum Zitat Vogel L et al (2009) Intra-rater agreement of the anorectal exam and classification of injury severity in children with spinal cord injury. Spinal Cord 47(9):687–691CrossRefPubMed Vogel L et al (2009) Intra-rater agreement of the anorectal exam and classification of injury severity in children with spinal cord injury. Spinal Cord 47(9):687–691CrossRefPubMed
25.
Zurück zum Zitat Maroldi R et al (1996) Computed tomography scanning of supraglottic neoplasms: its cost effective use in preoperative staging. Acad Radiol 3:S57–S59CrossRefPubMed Maroldi R et al (1996) Computed tomography scanning of supraglottic neoplasms: its cost effective use in preoperative staging. Acad Radiol 3:S57–S59CrossRefPubMed
26.
Zurück zum Zitat Chindasombatjaroen J et al (2011) Quantitative analysis of metallic artifacts caused by dental metals: comparison of cone-beam and multi-detector row CT scanners. Oral Radiol 27(2):114–120CrossRef Chindasombatjaroen J et al (2011) Quantitative analysis of metallic artifacts caused by dental metals: comparison of cone-beam and multi-detector row CT scanners. Oral Radiol 27(2):114–120CrossRef
27.
Zurück zum Zitat Boas FE, Fleischmann D (2011) Evaluation of two iterative techniques for reducing metal artifacts in computed tomography. Radiology 259(3):894–902CrossRefPubMed Boas FE, Fleischmann D (2011) Evaluation of two iterative techniques for reducing metal artifacts in computed tomography. Radiology 259(3):894–902CrossRefPubMed
28.
Zurück zum Zitat Kondo A et al (2010) Iterative correction applied to streak artifact reduction in an X-ray computed tomography image of the dento-alveolar region. Oral Radiol 26(1):61–65CrossRef Kondo A et al (2010) Iterative correction applied to streak artifact reduction in an X-ray computed tomography image of the dento-alveolar region. Oral Radiol 26(1):61–65CrossRef
29.
Zurück zum Zitat Dong J et al (2013) Metal-induced streak artifact reduction using iterative reconstruction algorithms in x-ray computed tomography image of the dentoalveolar region. Oral Surg Oral Med Oral Pathol Oral Radiol 115(2):E63–E73CrossRefPubMed Dong J et al (2013) Metal-induced streak artifact reduction using iterative reconstruction algorithms in x-ray computed tomography image of the dentoalveolar region. Oral Surg Oral Med Oral Pathol Oral Radiol 115(2):E63–E73CrossRefPubMed
30.
Zurück zum Zitat Zhou CS et al (2011) Monoenergetic imaging of dual-energy CT reduces artifacts from implanted metal orthopedic devices in patients with factures. Acad Radiol 18(10):1252–1257CrossRefPubMed Zhou CS et al (2011) Monoenergetic imaging of dual-energy CT reduces artifacts from implanted metal orthopedic devices in patients with factures. Acad Radiol 18(10):1252–1257CrossRefPubMed
31.
Zurück zum Zitat Bamberg F et al (2011) Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 21(7):1424–1429CrossRefPubMed Bamberg F et al (2011) Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 21(7):1424–1429CrossRefPubMed
32.
Zurück zum Zitat Wang FD et al (2014) Reduction of metal artifacts from alloy hip prostheses in computer tomography. J Comput Assist Tomogr 38(6):828–833CrossRefPubMed Wang FD et al (2014) Reduction of metal artifacts from alloy hip prostheses in computer tomography. J Comput Assist Tomogr 38(6):828–833CrossRefPubMed
33.
Zurück zum Zitat Brook OR et al (2012) Spectral CT with metal artifacts reduction software for improvement of tumor visibility in the vicinity of gold fiducial markers. Radiology 263(3):696–705CrossRefPubMed Brook OR et al (2012) Spectral CT with metal artifacts reduction software for improvement of tumor visibility in the vicinity of gold fiducial markers. Radiology 263(3):696–705CrossRefPubMed
34.
Zurück zum Zitat Pessis E et al (2013) Virtual monochromatic spectral imaging with fast kilovoltage switching: reduction of metal artifacts at CT. Radiographics 33(2):573–583CrossRefPubMed Pessis E et al (2013) Virtual monochromatic spectral imaging with fast kilovoltage switching: reduction of metal artifacts at CT. Radiographics 33(2):573–583CrossRefPubMed
Metadaten
Titel
Analysis of metal artifact reduction tools for dental hardware in CT scans of the oral cavity: kVp, iterative reconstruction, dual-energy CT, metal artifact reduction software: does it make a difference?
verfasst von
An De Crop
Jan Casselman
Tom Van Hoof
Melissa Dierens
Elke Vereecke
Nicolas Bossu
Jaime Pamplona
Katharina D’Herde
Hubert Thierens
Klaus Bacher
Publikationsdatum
01.08.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Neuroradiology / Ausgabe 8/2015
Print ISSN: 0028-3940
Elektronische ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-015-1537-1

Weitere Artikel der Ausgabe 8/2015

Neuroradiology 8/2015 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.