Skip to main content
Log in

Identification of Three Distinct Phylogenetic Groups of CAX Cation/Proton Antiporters

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Ca2+/cation antiporter (CaCA) proteins are integral membrane proteins that transport Ca2+ or other cations using the H+ or Na+ gradient generated by primary transporters. The CAX (for CAtion eXchanger) family is one of the five families that make up the CaCA superfamily. CAX genes have been found in bacteria, Dictyostelium, fungi, plants, and lower vertebrates, but only a small number of CAXs have been functionally characterized. In this study, we explored the diversity of CAXs and their phylogenetic relationships. The results demonstrate that there are three major types of CAXs: type I (CAXs similar to Arabidopsis thaliana CAX1, found in plants, fungi, and bacteria), type II (CAXs with a long N-terminus hydrophilic region, found in fungi, Dictyostelium, and lower vertebrates), and type III (CAXs similar to Escherichia coli ChaA, found in bacteria). Some CAXs were found to have secondary structures that are different from the canonical six transmembrane (TM) domains–acidic motif-five TM domain structure. Our phylogenetic tree indicated no evidence to support the cyanobacterial origin of plant CAXs or the classification of Arabidopsis exchangers CAX7 to CAX11. For the first time, these results clearly define the CAX exchanger family and its subtypes in phylogenetic terms. The surprising diversity of CAXs demonstrates their potential range of biochemical properties and physiologic relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Allaway D, Calvaco L, Saini S, Hocking P, Lodwig EM, Leonard ME, Poole PS (2000) Identification of a putative LPS-associated cation exporter form Rhizobium leguminosarum bv. viciae. FEMS Microbiol Lett 186:47–53

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Busch W, Saier MH (2002) The transporter classification (TC) system, 2002. Crit Rev Biochem Mol Biol 37:287–337

    Article  PubMed  CAS  Google Scholar 

  • Cai X, Lytton J (2004a) The cation/Ca2+ exchanger superfamily: Phylogenetic analysis and structural implications. Mol Biol Evol 21:1692–1703

    Article  CAS  Google Scholar 

  • Cai X, Lytton J (2004b) Molecular cloning of a sixth member of the K+-dependent Na+/Ca2+ exchanger gene family, NCKX6. J Biol Chem 279:5867–5876

    Article  CAS  Google Scholar 

  • Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV (2005) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected protein. Plant Cell 16:3285–3303

    Article  CAS  Google Scholar 

  • Catala R, Santos E, Alonso JM, Ecker JR, Martinez-Zapater JM, Salinas J (2004) Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell 15:2940–2951

    Article  CAS  Google Scholar 

  • Cheng NH, Pittman JK, Barkla BJ, Shigaki T, Hirschi KD (2003) The Arabidopsis cax1 mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters. Plant Cell 15:347–364

    Article  PubMed  CAS  Google Scholar 

  • Claros MG, von Heijne G (1994) TopPred II: An improved software for membrane protein structure predictions. Comput Appl Biosci 10:685–686

    PubMed  CAS  Google Scholar 

  • Cunningham KW, Fink GR (1996) Calcineurin inhibits VCX1-dayependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae. Mol Cell Biol 16:2226–2237

    PubMed  CAS  Google Scholar 

  • del Pozo L, Osaba L, Corchero J, Jimenez A (1999) A single nucleotide change in the MNR1 (VCX1/HUM1) gene determines resistance to manganese in Saccharomyces cerevisiae. Yeast 15:371–375

    Article  PubMed  CAS  Google Scholar 

  • Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  PubMed  CAS  Google Scholar 

  • Ettinger WF, Clear AM, Fanning KJ, Peck ML (1999) Identification of a Ca2+/H+ antiport in the plant chloroplast thylakoid membrane. Plant Physiol 119:1379–1385

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1996) Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol 266:418–427

    Article  PubMed  CAS  Google Scholar 

  • Hirschi K (2001) Vacuolar H+/Ca2+ transport: Who’s directing the traffic? Trends Plant Sci 6:100–104

    Article  PubMed  CAS  Google Scholar 

  • Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–133

    CAS  Google Scholar 

  • Hirschi K, Zhen R, Cunningham KW, Rea PA, Fink GR (1996) CAX1, a H+/Ca2+ antiporter from Arabidopsis. Proc Natl Acad Sci USA 93:8782–8786

    Article  PubMed  CAS  Google Scholar 

  • Ivey DM, Guffanti AA, Zemsky J, Pinner E, Karpel R, Padan E, Schuldiner S, Krulwich TA (1993) Cloning and characterization of a putative Ca2+/H+ antiporter gene from Escherichia coli upon functional complementation of Na+/H+ antiporter-deficient strains by the overexpressed gene. J Biol Chem 268:11296–11303

    PubMed  CAS  Google Scholar 

  • Kamiya T, Akahori T, Maeshima M (2005) Expression profile of the genes for rice cation/H+ exchanger family and functional analysis in yeast. Plant Cell Physiol 46:1735–1740

    Article  PubMed  CAS  Google Scholar 

  • Kamiya T, Maeshima M (2004) Residues in internal repeats of the rice cation/H+ exchanger are involved in the transport and selection of cations. J Biol Chem 279:812–819

    Article  PubMed  CAS  Google Scholar 

  • Kasai M, Muto S (1990) Ca2+ pump and Ca2+/H+ antiporter in plasma membrane vesicles isolated by aqueous two-phase partitioning from maize leaves. J Membr Biol 114:133–142

    Article  PubMed  CAS  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol 305:567–580

    Article  PubMed  CAS  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  PubMed  CAS  Google Scholar 

  • Laughery MD, Todd ML, Kaplan JH (2003) Mutational analysis of α-β subunit interactions in the delivery of Na, K-ATPase heterodimers to the plasma membrane. J Biol Chem 278:34794–34803

    Article  PubMed  CAS  Google Scholar 

  • Luo GZ, Wang HW, Huang J, Tian AG, Wang YJ, Zhang JS, Chen SY (2005) A putative plasma membrane cation/proton antiporter from soybean confers salt tolerance in Arabidopsis. Plant Mol Biol 59:809–820

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Embley TM (2004) Early evolution comes full circle. Nature 431:134–137

    Article  PubMed  CAS  Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed  Google Scholar 

  • McDonough AA, Geering K, Farley RA (1990) The sodium pump needs its beta subunit. FASEB J 4:1598–1605

    PubMed  CAS  Google Scholar 

  • Möller S, Croning MDR, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17:646–653

    Article  PubMed  Google Scholar 

  • Page RD (1996) TREEVIEW: An application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Palty R, Ohana E, Hershfinkel M, Volokita M, Elgazar V, Beharier O, Silverman WF, Argaman M, Sekler I (2004) Lithium-calcium exchange is mediated by a distinct potassium-independent sodium-calcium exchanger. J Biol Chem 279:25234–25240

    Article  PubMed  CAS  Google Scholar 

  • Park S, Cheng NH, Pittman JK, Yoo KS, Park J, Smith RH, Hirschi KD (2005a) Increased calcium levels and prolonged shelf life in tomatoes expressing Arabidopsis H+/Ca2+ transporters. Plant Physiol 139:1194–1206

    Article  CAS  Google Scholar 

  • Park S, Kang TS, Kim CK, Han JS, Kim S, Smith RH, Pike LM, Hirschi KD (2005b) Genetic manipulation for enhancing calcium content in potato tuber. J Agric Food Chem 53:5598–5603

    Article  CAS  Google Scholar 

  • Park S, Kim CK, Pike LM, Smith RH, Hirschi KD (2004) Increased calcium in carrots by expression of an Arabidopsis H+/Ca2+ transporter. Mol Breed 14:275–282

    Article  Google Scholar 

  • Philipson KD, Nicoll DA (2000) Sodium-calcium exchange: A molecular perspective. Annu Rev Physiol 62:111–133

    Article  PubMed  CAS  Google Scholar 

  • Pittman JK, Cheng NH, Shigaki T, Kunta M, Hirschi KD (2004) Functional dependence on calcineurin by variants of the Saccharomyces cerevisiae vacuolar Ca2+/H+ exchanger Vcx1p. Mol Microbiol 54:1104–1116

    Article  PubMed  CAS  Google Scholar 

  • Qi BS, Li CG, Chen YM, Lu PL, Hao FS, Shen GM, Chen J, Wang XC (2005) Functional analysis of rice Ca2+/H+ antiporter OsCAX3 in yeast and its subcellular localization in plant. Prog Biochem Biophys 32:876–881 (in Chinese)

    CAS  Google Scholar 

  • Ruknudin A, Schulze DH (2002) Proteomics approach to Na+/Ca2+ exchangers in prokaryotes. Ann N Y Acad Sci 976:103–108

    Article  PubMed  CAS  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:S401–S417

    PubMed  CAS  Google Scholar 

  • Schiott M, Romanowsky SM, Baekgaard L, Jakobsen MK, Palmgren MG, Harper JF (2004) A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proc Natl Acad Sci USA 101:9502–9507

    Article  PubMed  CAS  Google Scholar 

  • Shigaki T, Cheng NH, Pittman JK, Hirschi K (2001) Structural determinants of Ca2+ transport in the Arabidopsis H+/Ca2+ antiporter CAX1. J Biol Chem 276:43152–43159

    Article  PubMed  CAS  Google Scholar 

  • Shigaki T, Hirschi K (2000) Characterization of CAX-like genes in plants: Implications for functional diversity. Gene 257:291–298

    Article  PubMed  CAS  Google Scholar 

  • Shigaki T, Pittman JK, Hirschi KD (2003) Manganese specificity determinants in the Arabidopsis metal/H+ antiporter CAX2. J Biol Chem 278:6610–6617

    Article  PubMed  CAS  Google Scholar 

  • Song CP, Guo Y, Lambert G, Galbraith DW, Jagendorf A, Zhu JK (2004) A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:10211–10216

    Article  PubMed  CAS  Google Scholar 

  • Stamatakis A, Ludwig T, Meier H (2005) RAxML-III: A fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21:456–463

    Article  PubMed  CAS  Google Scholar 

  • Swafford DL (1998) PAUP*: Phylogenetic analysis using parsimony (*and other materials). Sinauer, Sunderland, MA

    Google Scholar 

  • Ueoka-Nakanishi H, Nakanishi Y, Tanaka Y, Maeshima M (1999) Properties and molecular cloning of Ca2+/H+ antiporter in the vacuolar membrane of mung bean. Eur J Biochem 262:417–425

    Article  PubMed  CAS  Google Scholar 

  • Ueoka-Nakanishi H, Tsuchiya T, Sasaki M, Nakanishi Y, Cunningham KW, Maeshima M (2000) Functional expression of mung bean Ca2+/H+ antiporter in yeast and its intracellular localization in the hypocotyl and tobacco cells. Eur J Biochem 267:3090–3098

    Article  PubMed  CAS  Google Scholar 

  • Waditee R, Hossain GS, Tanaka Y, Nakamura T, Shikata M, Takano J, Takabe T, Takabe T (2004) Isolation and functional characterization of Ca2+/H+ antiporters from cyanobacteria. J Biol Chem 279:4330–4338

    Article  PubMed  CAS  Google Scholar 

  • Yan BX, Sun YQ (1997) Glycine residues provide flexibility for enzyme active sites. J Biol Chem 272:3190–3194

    Article  PubMed  CAS  Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for John M. Ward, Heven Sze, and the members of the Hirschi laboratory for critical reading of the manuscript and helpful suggestions. This work was funded by the National Science Foundation (Grant No. 0209777 to K. H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Shigaki.

Additional information

[Reviewing Editor: David Guttman]

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shigaki, T., Rees, I., Nakhleh, L. et al. Identification of Three Distinct Phylogenetic Groups of CAX Cation/Proton Antiporters. J Mol Evol 63, 815–825 (2006). https://doi.org/10.1007/s00239-006-0048-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-006-0048-4

Keywords

Navigation