Skip to main content
Log in

Acyl-CoA Dehydrogenases: Dynamic History of Protein Family Evolution

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The acyl-CoA dehydrogenases (ACADs) are enzymes that catalyze the α,β-dehydrogenation of acyl-CoA esters in fatty acid and amino acid catabolism. Eleven ACADs are now recognized in the sequenced human genome, and several homologs have been reported from bacteria, fungi, plants, and nematodes. We performed a systematic comparative genomic study, integrating homology searches with methods of phylogenetic reconstruction, to investigate the evolutionary history of this family. Sequence analyses indicate origin of the family in the common ancestor of Archaea, Bacteria, and Eukaryota, illustrating its essential role in the metabolism of early life. At least three ACADs were already present at that time: ancestral glutaryl-CoA dehydrogenase (GCD), isovaleryl-CoA dehydrogenase (IVD), and ACAD10/11. Two gene duplications were unique to the eukaryotic domain: one resulted in the VLCAD and ACAD9 paralogs and another in the ACAD10 and ACAD11 paralogs. The overall patchy distribution of specific ACADs across the tree of life is the result of dynamic evolution that includes numerous rounds of gene duplication and secondary losses, interdomain lateral gene transfer events, alteration of cellular localization, and evolution of novel proteins by domain acquisition. Our finding that eukaryotic ACAD species are more closely related to bacterial ACADs is consistent with endosymbiotic origin of ACADs in eukaryotes and further supported by the localization of all nine previously studied ACADs in mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACADs:

Acyl-CoA dehydrogenases

ACOX:

Acyl-CoA oxidase

GCD:

Glutaryl-CoA dehydrogenase

IBD:

Isobutyryl-CoA dehydrogenase

IVD:

Isovaleryl-CoA dehydrogenase

VLCAD:

Very long-chain acyl-CoA dehydrogenase

LCAD:

Long-chain acyl-CoA dehydrogenase

SCAD:

Short-chain acyl-CoA dehydrogenase

SBCAD:

Short/branched-chain acyl-CoA dehydrogenase, also known as 2-methyl branched chain acyl-CoA dehydrogenase

MCAD:

Medium-chain acyl-CoA dehydrogenase

LGT:

Lateral gene transfer

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Andresen BS, Bross P, Vianey-Saban C, Divry P, Zabot MT, Roe CR, Nada MA, Byskov A, Kruse TA, Neve S, Kristiansen K, Knudsen I, Corydon MJ, Gregersen N (1996) Cloning and characterization of human very-long-chain acyl-CoA dehydrogenase cDNA, chromosomal assignment of the gene and identification in four patients of nine different mutations within the VLCAD gene. Hum Mol Genet 5:461–472

    Article  PubMed  Google Scholar 

  • Battaile K, Molin-Case J, Paschke R, Wang M, Bennett D, Vockley J, Kim J-JP (2002) Crystal structure of rat short chain acyl-CoA dehydrogenase complexed with acetoacetyl-CoA; comparison with other acyl-CoA dehydrogenases. J Biol Chem 277:12200–12207

    Article  PubMed  CAS  Google Scholar 

  • Battaile KP, Nguyen TV, Vockley J, Kim JJ (2004) Structures of isobutyryl-CoA dehydrogenase and enzyme-product complex: comparison with isovaleryl- and short-chain acyl-CoA dehydrogenases. J Biol Chem 279:16526–16534

    Article  PubMed  CAS  Google Scholar 

  • Bode K, Hooks MA, Couee II (1999) Identification, separation, and characterization of acyl-coenzyme A dehydrogenases involved in mitochondrial beta-oxidation in higher plants. Plant Physiol 119:1305–1314

    Article  PubMed  CAS  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  PubMed  CAS  Google Scholar 

  • Daschner K, Thalheim C, Guha C, Brennicke A, Binder S (1999) In plants a putative isovaleryl-CoA-dehydrogenase is located in mitochondria. Plant Mol Biol 39:1275–1282

    PubMed  CAS  Google Scholar 

  • De Bellis L, Gonzali S, Alpi A, Hayashi H, Hayashi M, Nishimura M (2000) Purification and characterization of a novel pumpkin short-chain acyl-coenzyme A oxidase with structural similarity to acyl-coenzyme A dehydrogenases. Plant Physiol 123:327–334

    Article  PubMed  Google Scholar 

  • Dieuaide M, Couee I, Pradet A, Raymond P (1993) Effects of glucose starvation on the oxidation of fatty acids by maize root tip mitochondria and peroxisomes: evidence for mitochondrial fatty acid beta-oxidation and acyl-CoA dehydrogenase activity in a higher plant. Biochem J 296(Pt 1):199–207

    PubMed  CAS  Google Scholar 

  • Djordjevic S, Pace CP, Stankovich MT, Kim JJP (1995) Three-dimensional structure of butyryl-CoA dehydrogenase from Megasphaera esdenii. Biochemistry 34:2163–2171

    Article  PubMed  CAS  Google Scholar 

  • Duran E, Walker DJ, Johnson KR, Komuniecki PR, Komuniecki RW (1998) Developmental and tissue-specific expression of 2-methyl branched-chain enoyl CoA reductase isoforms in the parasitic nematode, Ascaris suum. Mol Biochem Parasitol 91:307–318

    Article  PubMed  CAS  Google Scholar 

  • Ensenauer R, He M, Willard JM, Goetzman ES, Corydon TJ, Vandahl BB, Mohsen AW, Isaya G, Vockley J (2005) Human acyl-CoA dehydrogenase-9 plays a novel role in the mitochondrial beta-oxidation of unsaturated fatty acids. J Biol Chem 280:32309–32316

    Article  PubMed  CAS  Google Scholar 

  • Faivre-Nitschke SE, Couee I, Vermel M, Grienenberger JM, Gualberto JM (2001) Purification, characterization and cloning of isovaleryl-CoA dehydrogenase from higher plant mitochondria. Eur J Biochem 268:1332–1339

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Finocchiaro G, Ito M, Tanaka K (1987) Purification and properties of short chain acyl-CoA, medium chain acyl-CoA, and isovaleryl-CoA dehydrogenases from human liver. J Biol Chem 262:7982–7989

    PubMed  CAS  Google Scholar 

  • Foster PG, Hickey DA (1999) Compositional bias may affect both DNA-based and protein-based phylogenetic reconstructions. J Mol Evol 48:284–290

    Article  PubMed  CAS  Google Scholar 

  • Fu Z, Wang M, Paschke R, Rao KS, Frerman FE, Kim JJ (2004) Crystal structures of human glutaryl-CoA dehydrogenase with and without an alternate substrate: structural bases of dehydrogenation and decarboxylation reactions. Biochemistry 43:9674–9684

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt B, Fischer K, Maier U (1995) Effect of palmitoylcarnitine on mitochondrial activities. Planta 196:720–726

    Article  CAS  Google Scholar 

  • Goetzman ES, Mohsen AW, Prasad K, Vockley J (2005) Convergent evolution of a 2-methylbutyryl-CoA dehydrogenase from isovaleryl-CoA dehydrogenase in Solanum tuberosum. J Biol Chem 280:4873–4879

    Article  PubMed  CAS  Google Scholar 

  • Goodman SI, Kratz LE, DiGiulio KA, Biery BJ, Goodman KE, Isaya G, Frerman FE (1995) Cloning of glutaryl-CoA dehydrogenase cDNA, and expression of wild type and mutant enzymes in Escherichia coli. Hum Mol Genet 4:1493–1498

    Article  PubMed  CAS  Google Scholar 

  • Graham IA, Eastmond PJ (2002) Pathways of straight and branched chain fatty acid catabolism in higher plants. Prog Lipid Res 41:156–181

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hall CL (1978) Acyl-CoA dehydrogenases and electron-transferring flavoprotein. Methods Enzymol 53:502–518

    Article  PubMed  CAS  Google Scholar 

  • Hamada K, Ago H, Kuramitsu S, Miyano M (2004) Crystal structure of Thermus thermophilus medium-chain acyl-CoA dehydrogenase. PDB

  • Hayashi H, De Bellis L, Ciurli A, Kondo M, Hayashi M, Nishimura M (1999) A novel acyl-CoA oxidase that can oxidize short-chain acyl-CoA in plant peroxisomes. J Biol Chem 274:12715–12721

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Keese S, Fenton WA, Tanaka K (1987) Biosynthesis of four rat liver mitochondrial acyl-CoA dehydrogenases. Import into mitochondria and processing of their precursors in a cell-free system and in cultured cells. Arch Biochem Biophys 252:662–674

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi M, Hatano N, Yokota S, Shimozawa N, Imanaka T, Taniguchi H (2004) Proteomic analysis of rat liver peroxisome: presence of peroxisome-specific isozyme of Lon protease. J Biol Chem 279:421–428

    Article  PubMed  CAS  Google Scholar 

  • Kim JJP, Wang M, Paschke R (1993) Crystal structures of medium-chain acyl-CoA dehydrogenase from pig liver mitochondria with and without substrate. Proc Natl Acad Sci USA 90:7523–7527

    Article  PubMed  CAS  Google Scholar 

  • Kionka C, Kunau WH (1985) Inducible beta-oxidation pathway in Neurospora crassa. J Bacteriol 161:153–157

    PubMed  CAS  Google Scholar 

  • Klein K (1973) Dehydrogenasen und ETF in Escherichia coli. Studien zum Fettsäureabbau. Doctoral dissertation, University of Cologne, Cologne, Germany

  • Komuniecki R, Fekete S, Thissen-Parra J (1985) Purification and characterization of the 2-methyl branched-chain Acyl-CoA dehydrogenase, an enzyme involved in NADH-dependent enoyl-CoA reduction in anaerobic mitochondria of the nematode, Ascaris suum. J Biol Chem 260:4770–4777

    PubMed  CAS  Google Scholar 

  • Krasko A, Schroder HC, Hassanein HM, Batel R, Muller IM, Muller WE (1998) Identification and expression of the SOS response, aidB-like, gene in the marine sponge Geodia cydonium: implication for the phylogenetic relationships of metazoan acyl-CoA dehydrogenases and acyl-CoA oxidases. J Mol Evol 47:343–352

    Article  PubMed  CAS  Google Scholar 

  • Kunau WH, Dommes V, Schulz H (1995) Beta-oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress. Prog Lipid Res 34:267–342

    Article  PubMed  CAS  Google Scholar 

  • Landini P, Hajec LI, Volkert MR (1994) Structure and transcriptional regulation of the Escherichia coli adaptive response gene aidB. J Bacteriol 176:6583–6589

    PubMed  CAS  Google Scholar 

  • Lea W, Abbas AS, Sprecher H, Vockley J, Schulz H (2000) Long-chain acyl-CoA dehydrogenase is a key enzyme in the mitochondrial beta-oxidation of unsaturated fatty acids. Biochim Biophys Acta 1485:121–128

    PubMed  CAS  Google Scholar 

  • Lee HJ, Wang M, Paschke R, Nandy A, Ghisla S, Kim JJ (1996) Crystal structures of the wild type and the Glu376Gly/Thr255Glu mutant of human medium-chain acyl-CoA dehydrogenase: influence of the location of the catalytic base on substrate specificity. Biochemistry 35:12412–12420

    Article  PubMed  CAS  Google Scholar 

  • Lenich AC, Goodman SI (1986) The purification and characterization of glutaryl-coenzyme A dehydrogenase from porcine and human liver. J Biol Chem 261:4090–4096

    PubMed  CAS  Google Scholar 

  • Masterson C, Wood C (2001) Mitochondrial and peroxisomal beta-oxidation capacities of organs from a non-oilseed plant. Proc Biol Sci 268:1949–1953

    Article  PubMed  CAS  Google Scholar 

  • Nandy A, Kuchler B, Ghisla S (1996) Molecular evolution and substrate specificity of acyl-CoA dehydrogenases: chimaeric “medium/long’ chain-specific enzyme from medium-chain acyl-CoA dehydrogenase. Biochem Soc Trans 24:105–110

    PubMed  CAS  Google Scholar 

  • Oey NA, Ruiter JP, Ijlst L, Attie-Bitach T, Vekemans M, Wanders RJ, Wijburg FA (2006) Acyl-CoA dehydrogenase 9 (ACAD 9) is the long-chain acyl-CoA dehydrogenase in human embryonic and fetal brain. Biochem Biophys Res Commun 346:33–37

    Article  PubMed  CAS  Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    Article  PubMed  CAS  Google Scholar 

  • Souri M, Aoyama T, Hoganson G, Hashimoto T (1998a) Very-long-chain acyl-CoA dehydrogenase subunit assembles to the dimer form on mitochondrial inner membrane. FEBS Lett 426:187–190

    Article  PubMed  CAS  Google Scholar 

  • Souri M, Aoyama T, Yamaguchi S, Hashimoto T (1998b) Relationship between structure and substrate-chain-length specificity of mitochondrial very-long-chain acyl-coenzyme A dehydrogenase. Eur J Biochem 257:592–598

    Article  PubMed  CAS  Google Scholar 

  • Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF, Zeeberg B, Buetow KH, Schaefer CF, Bhat NK, Hopkins RF, Jordan H, Moore T, Max SI, Wang J, Hsieh F, Diatchenko L, Marusina K, Farmer AA, Rubin GM, Hong L, Stapleton M, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Brownstein MJ, Usdin TB, Toshiyuki S, Carninci P, Prange C, Raha SS, Loquellano NA, Peters GJ, Abramson RD, Mullahy SJ, Bosak SA, McEwan PJ, McKernan KJ, Malek JA, Gunaratne PH, Richards S, Worley KC, Hale S, Garcia AM, Gay LJ, Hulyk SW, Villalon DK, Muzny DM, Sodergren EJ, Lu X, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madan A, Young AC, Shevchenko Y, Bouffard GG, Blakesley RW, Touchman JW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Krzywinski MI, Skalska U, Smailus DE, Schnerch A, Schein JE, Jones SJ, Marra MA, Mammalian Gene Collection Program T (2002) Generation and initial analysis of more than 15, 000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA 99:16899–16903

    Article  PubMed  Google Scholar 

  • Swofford DL (2000) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.0 Beta. Sinauer, Sunderland

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W—improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tiffany KA, Roberts DL, Wang M, Paschke R, Mohsen AWA, Vockley J, Kim JJP (1997) Structure of human isovaleryl-coA dehydrogenase at 2.6 angstrom resolution—basis for substrate specificity. Biochemistry 36:8455–8464

    Article  PubMed  CAS  Google Scholar 

  • Toogood HS, van Thiel A, Basran J, Sutcliffe MJ, Scrutton NS, Leys D (2004) Extensive domain motion and electron transfer in the human electron transferring flavoprotein.medium chain Acyl-CoA dehydrogenase complex. J Biol Chem 279:32904–32912

    Article  PubMed  CAS  Google Scholar 

  • Valenciano S, Lucas JR, Pedregosa A, Monistrol IF, Laborda F (1996) Induction of beta-oxidation enzymes and microbody proliferation in Aspergillus nidulans. Arch Microbiol 166:336–341

    Article  PubMed  CAS  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699

    PubMed  CAS  Google Scholar 

  • Ye X, Ji C, Zhou C, Zeng L, Gu S, Ying K, Xie Y, Mao Y (2004) Cloning and characterization of a human cDNA ACAD10 mapped to chromosome 12q24.1. Mol Biol Rep 31:191–195

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Zhang W, Zou D, Chen G, Wan T, Zhang M, Cao X (2002) Cloning and functional characterization of ACAD-9, a novel member of human acyl-CoA dehydrogenase family. Biochem Biophys Res Commun 297:1033–1042

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by PHS NIH Grant R01-DK54936 and the Pennsylvania Department of Health, Tobacco Formula Funding. We thank Eric Goetzman for discussion on physiological effects of ACAD deficiencies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuzana Swigoňová or Jerry Vockley.

Electronic supplementary material

Below are the links to the electronic supplementary materials.

Supplementary material 1 (PDF 61 kb)

Supplementary material 2 (PDF 138 kb)

Supplementary material 3 (PDF 133 kb)

Data matrix of acyl-CoA dehydrogenases and outgroups (DOC 1337 kb)

Data matrix of glutary-CoA dehydrogenases (DOC 65 kb)

Data matrix of ACAD10 and ACAD11 homologs (DOC 260 kb)

Data matrix of isovalyryl-CoA dehydrogenases (DOC 105 kb)

Data matrix of very-long acyl-CoA dehydrogenase and ACAD9 homologs (DOC 111 kb)

Data matrix of long-chain acyl-CoA dehydrogenases and relatives (DOC 85 kb)

Data matrix of isobutyryl-CoA dehydrogenases (DOC 46 kb)

Data matrix of short/branched-chain acyl-CoA dehydrogenases (DOC 216 kb)

Data matrix of short-chain acyl-CoA dehydrogenases (DOC 175 kb)

Data matrix of medium-chain acyl-CoA dehydrogenases (DOC 121 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swigoňová, Z., Mohsen, AW. & Vockley, J. Acyl-CoA Dehydrogenases: Dynamic History of Protein Family Evolution. J Mol Evol 69, 176–193 (2009). https://doi.org/10.1007/s00239-009-9263-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9263-0

Keywords

Navigation