Skip to main content
Erschienen in: Urolithiasis 1/2015

01.01.2015 | Invited Review

Unified theory on the pathogenesis of Randall’s plaques and plugs

verfasst von: Saeed R. Khan, Benjamin K. Canales

Erschienen in: Urolithiasis | Sonderheft 1/2015

Einloggen, um Zugang zu erhalten

Abstract

Kidney stones develop attached to sub-epithelial plaques of calcium phosphate (CaP) crystals (termed Randall’s plaque) and/or form as a result of occlusion of the openings of the Ducts of Bellini by stone-forming crystals (Randall’s plugs). These plaques and plugs eventually extrude into the urinary space, acting as a nidus for crystal overgrowth and stone formation. To better understand these regulatory mechanisms and the pathophysiology of idiopathic calcium stone disease, this review provides in-depth descriptions of the morphology and potential origins of these plaques and plugs, summarizes existing animal models of renal papillary interstitial deposits, and describes factors that are believed to regulate plaque formation and calcium overgrowth. Based on evidence provided within this review and from the vascular calcification literature, we propose a “unified” theory of plaque formation—one similar to pathological biomineralization observed elsewhere in the body. Abnormal urinary conditions (hypercalciuria, hyperoxaluria, and hypocitraturia), renal stress or trauma, and perhaps even the normal aging process lead to transformation of renal epithelial cells into an osteoblastic phenotype. With this de-differentiation comes an increased production of bone-specific proteins (i.e., osteopontin), a reduction in crystallization inhibitors (such as fetuin and matrix Gla protein), and creation of matrix vesicles, which support nucleation of CaP crystals. These small deposits promote aggregation and calcification of surrounding collagen. Mineralization continues by calcification of membranous cellular degradation products and other fibers until the plaque reaches the papillary epithelium. Through the activity of matrix metalloproteinases or perhaps by brute physical force produced by the large sub-epithelial crystalline mass, the surface is breached and further stone growth occurs by organic matrix-associated nucleation of CaOx or by the transformation of the outer layer of CaP crystals into CaOx crystals. Should this theory hold true, developing an understanding of the cellular mechanisms involved in progression of a small, basic interstitial plaque to that of an expanding, penetrating plaque could assist in the development of new therapies for stone prevention.
Literatur
1.
Zurück zum Zitat Stamatelou KK, Francis ME, Jones CA, Nyberg LM, Curhan GC (2003) Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int 63:1817–1823PubMed Stamatelou KK, Francis ME, Jones CA, Nyberg LM, Curhan GC (2003) Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int 63:1817–1823PubMed
2.
Zurück zum Zitat Rule AD, Roger VL, Melton LJ 3rd, Bergstralh EJ, Li X et al (2010) Kidney stones associate with increased risk for myocardial infarction. J Am Soc Nephrol 21:1641–1644PubMedCentralPubMed Rule AD, Roger VL, Melton LJ 3rd, Bergstralh EJ, Li X et al (2010) Kidney stones associate with increased risk for myocardial infarction. J Am Soc Nephrol 21:1641–1644PubMedCentralPubMed
3.
Zurück zum Zitat Khan SR (2012) Is oxidative stress, a link between nephrolithiasis and obesity, hypertension, diabetes, chronic kidney disease, metabolic syndrome? Urol Res 40:95–112PubMed Khan SR (2012) Is oxidative stress, a link between nephrolithiasis and obesity, hypertension, diabetes, chronic kidney disease, metabolic syndrome? Urol Res 40:95–112PubMed
4.
Zurück zum Zitat Jungers P, Joly D, Barbey F, Choukroun G, Daudon M (2004) ESRD caused by nephrolithiasis: prevalence, mechanisms, and prevention. Am J Kidney Dis 44:799–805PubMed Jungers P, Joly D, Barbey F, Choukroun G, Daudon M (2004) ESRD caused by nephrolithiasis: prevalence, mechanisms, and prevention. Am J Kidney Dis 44:799–805PubMed
5.
Zurück zum Zitat Rule AD, Bergstralh EJ, Melton LJ 3rd, Li X, Weaver AL et al (2009) Kidney stones and the risk for chronic kidney disease. Clin J Am Soc Nephrol 4:804–811PubMedCentralPubMed Rule AD, Bergstralh EJ, Melton LJ 3rd, Li X, Weaver AL et al (2009) Kidney stones and the risk for chronic kidney disease. Clin J Am Soc Nephrol 4:804–811PubMedCentralPubMed
6.
Zurück zum Zitat Obligado SH, Goldfarb DS (2008) The association of nephrolithiasis with hypertension and obesity: a review. Am J Hypertens 21:257–264PubMed Obligado SH, Goldfarb DS (2008) The association of nephrolithiasis with hypertension and obesity: a review. Am J Hypertens 21:257–264PubMed
7.
Zurück zum Zitat Borghi L, Schianchi T, Meschi T, Guerra A, Allegri F et al (2002) Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N Engl J Med 346:77–84PubMed Borghi L, Schianchi T, Meschi T, Guerra A, Allegri F et al (2002) Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N Engl J Med 346:77–84PubMed
8.
9.
Zurück zum Zitat Raynal G, Petit J, Saint F (2009) Which efficiency index for urinary stones treatment? Urol Res 37:237–239PubMed Raynal G, Petit J, Saint F (2009) Which efficiency index for urinary stones treatment? Urol Res 37:237–239PubMed
10.
Zurück zum Zitat Randall A (1940) Papillary pathology as a precursor of primary renal calculus. J Urol 44:580–589 Randall A (1940) Papillary pathology as a precursor of primary renal calculus. J Urol 44:580–589
11.
Zurück zum Zitat Randall A (1940) The etiology of primary renal calculus. Int Abstr Surg 71:209–240 Randall A (1940) The etiology of primary renal calculus. Int Abstr Surg 71:209–240
13.
Zurück zum Zitat Haggit RC, Pitcock JA (1971) Renal medullary calcification: a light and electron microscopic study. J Urol 106:342–347 Haggit RC, Pitcock JA (1971) Renal medullary calcification: a light and electron microscopic study. J Urol 106:342–347
14.
Zurück zum Zitat Weller RO, Nester B, Cooke SAR (1971) Calcification in the human renal papilla: an electron microscope study. J Pathol 107:211–216 Weller RO, Nester B, Cooke SAR (1971) Calcification in the human renal papilla: an electron microscope study. J Pathol 107:211–216
15.
Zurück zum Zitat Cooke SAR (1970) The site of calcification in the human renal papilla. Br J Surg 57:890–897PubMed Cooke SAR (1970) The site of calcification in the human renal papilla. Br J Surg 57:890–897PubMed
16.
Zurück zum Zitat Stoller ML, Low RK, Shami GS, McCormick VD, Kerschmann RL (1996) High resolution radiography of cadaveric kidneys: unraveling the mystery of Randall’s plaque formation. J Urol 156:1263–1266PubMed Stoller ML, Low RK, Shami GS, McCormick VD, Kerschmann RL (1996) High resolution radiography of cadaveric kidneys: unraveling the mystery of Randall’s plaque formation. J Urol 156:1263–1266PubMed
17.
Zurück zum Zitat Coe FL, Evan AP, Lingeman JE, Worcester EM (2010) Plaque and deposits in nine human stone diseases. Urol Res 38:239–247PubMedCentralPubMed Coe FL, Evan AP, Lingeman JE, Worcester EM (2010) Plaque and deposits in nine human stone diseases. Urol Res 38:239–247PubMedCentralPubMed
18.
Zurück zum Zitat Miller NL, Gillen DL, Williams JC Jr, Evan AP, Bledsoe SB et al (2009) A formal test of the hypothesis that idiopathic calcium oxalate stones grow on Randall’s plaque. BJU Int 103:966–971PubMedCentralPubMed Miller NL, Gillen DL, Williams JC Jr, Evan AP, Bledsoe SB et al (2009) A formal test of the hypothesis that idiopathic calcium oxalate stones grow on Randall’s plaque. BJU Int 103:966–971PubMedCentralPubMed
19.
Zurück zum Zitat Evan AP, Lingeman JE, Coe FL, Worcester EM (2008) Role of interstitial apatite plaque in the pathogenesis of the common calcium oxalate stone. Semin Nephrol 28:111–119PubMedCentralPubMed Evan AP, Lingeman JE, Coe FL, Worcester EM (2008) Role of interstitial apatite plaque in the pathogenesis of the common calcium oxalate stone. Semin Nephrol 28:111–119PubMedCentralPubMed
20.
Zurück zum Zitat Evan AP (2010) Physiopathology and etiology of stone formation in the kidney and the urinary tract. Pediatr Nephrol 25:831–841PubMedCentralPubMed Evan AP (2010) Physiopathology and etiology of stone formation in the kidney and the urinary tract. Pediatr Nephrol 25:831–841PubMedCentralPubMed
21.
Zurück zum Zitat Evan AP, Coe FL, Rittling SR, Bledsoe SM, Shao Y et al (2005) Apatite plaque particles in inner medulla of kidneys of calcium oxalate stone formers: osteopontin localization. Kidney Int 68:145–154PubMed Evan AP, Coe FL, Rittling SR, Bledsoe SM, Shao Y et al (2005) Apatite plaque particles in inner medulla of kidneys of calcium oxalate stone formers: osteopontin localization. Kidney Int 68:145–154PubMed
22.
Zurück zum Zitat Evan AP, Bledsoe S, Worcester EM, Coe FL, Lingeman JE et al (2007) Renal inter-alpha-trypsin inhibitor heavy chain 3 increases in calcium oxalate stone-forming patients. Kidney Int 72:1503–1511PubMed Evan AP, Bledsoe S, Worcester EM, Coe FL, Lingeman JE et al (2007) Renal inter-alpha-trypsin inhibitor heavy chain 3 increases in calcium oxalate stone-forming patients. Kidney Int 72:1503–1511PubMed
23.
Zurück zum Zitat Evan A, Lingeman J, Coe FL, Worcester E (2006) Randall’s plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 69:1313–1318PubMed Evan A, Lingeman J, Coe FL, Worcester E (2006) Randall’s plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 69:1313–1318PubMed
24.
Zurück zum Zitat Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB et al (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111:607–616PubMedCentralPubMed Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB et al (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111:607–616PubMedCentralPubMed
25.
Zurück zum Zitat Carpentier X, Bazin D, Combes C, Mazouyes A, Rouziere S et al (2011) High Zn content of Randall’s plaque: a mu-X-ray fluorescence investigation. J Trace Elem Med Biol 25:160–165 Carpentier X, Bazin D, Combes C, Mazouyes A, Rouziere S et al (2011) High Zn content of Randall’s plaque: a mu-X-ray fluorescence investigation. J Trace Elem Med Biol 25:160–165
26.
Zurück zum Zitat Khan SR, Rodriguez DE, Gower LB, Monga M (2012) Association of Randall plaque with collagen fibers and membrane vesicles. J Urol 187:1094–1100PubMedCentralPubMed Khan SR, Rodriguez DE, Gower LB, Monga M (2012) Association of Randall plaque with collagen fibers and membrane vesicles. J Urol 187:1094–1100PubMedCentralPubMed
27.
Zurück zum Zitat Linnes MP, Krambeck AE, Cornell L, Williams JC, Jr., Korinek M et al (2013) Phenotypic characterization of kidney stone formers by endoscopic and histological quantification of intrarenal calcification. Kidney Int 84:818–825 Linnes MP, Krambeck AE, Cornell L, Williams JC, Jr., Korinek M et al (2013) Phenotypic characterization of kidney stone formers by endoscopic and histological quantification of intrarenal calcification. Kidney Int 84:818–825
28.
Zurück zum Zitat Khan SR, Finlayson B, Hackett R (1984) Renal papillary changes in patient with calcium oxalate lithiasis. Urology 23:194–199PubMed Khan SR, Finlayson B, Hackett R (1984) Renal papillary changes in patient with calcium oxalate lithiasis. Urology 23:194–199PubMed
29.
Zurück zum Zitat Coe FL, Evan AP, Worcester EM, Lingeman JE (2010) Three pathways for human kidney stone formation. Urol Res 38:147–160PubMedCentralPubMed Coe FL, Evan AP, Worcester EM, Lingeman JE (2010) Three pathways for human kidney stone formation. Urol Res 38:147–160PubMedCentralPubMed
30.
Zurück zum Zitat Stoller ML, Meng MV, Abrahams HM, Kane JP (2004) The primary stone event: a new hypothesis involving a vascular etiology. J Urol 171:1920–1924PubMed Stoller ML, Meng MV, Abrahams HM, Kane JP (2004) The primary stone event: a new hypothesis involving a vascular etiology. J Urol 171:1920–1924PubMed
31.
Zurück zum Zitat Bagga HS, Chi T, Miller J, Stoller ML (2013) New insights into the pathogenesis of renal calculi. Urol Clin North Am 40:1–12PubMedCentralPubMed Bagga HS, Chi T, Miller J, Stoller ML (2013) New insights into the pathogenesis of renal calculi. Urol Clin North Am 40:1–12PubMedCentralPubMed
32.
Zurück zum Zitat Khan SR (2013) Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J Urol 189:803–811PubMed Khan SR (2013) Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J Urol 189:803–811PubMed
33.
Zurück zum Zitat Khan SR (2013) Stress oxidative: nephrolithiasis and chronic kidney diseases. Minerva Med 104:23–30PubMed Khan SR (2013) Stress oxidative: nephrolithiasis and chronic kidney diseases. Minerva Med 104:23–30PubMed
34.
Zurück zum Zitat Evan AP, Coe FL, Lingeman JE, Shao Y, Matlaga BR et al (2006) Renal crystal deposits and histopathology in patients with cystine stones. Kidney Int 69:2227–2235PubMed Evan AP, Coe FL, Lingeman JE, Shao Y, Matlaga BR et al (2006) Renal crystal deposits and histopathology in patients with cystine stones. Kidney Int 69:2227–2235PubMed
35.
Zurück zum Zitat Kok DJ, Khan SR (1994) Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 46:847–854PubMed Kok DJ, Khan SR (1994) Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 46:847–854PubMed
36.
Zurück zum Zitat Finlayson B, Reid F (1978) The expectation of free and fixed particles in urinary stone disease. Invest Urol 15:442–448PubMed Finlayson B, Reid F (1978) The expectation of free and fixed particles in urinary stone disease. Invest Urol 15:442–448PubMed
37.
Zurück zum Zitat Khan SR (1995) Calcium oxalate crystal interaction with renal tubular epithelium, mechanism of crystal adhesion and its impact on stone development. Urol Res 23:71–79PubMed Khan SR (1995) Calcium oxalate crystal interaction with renal tubular epithelium, mechanism of crystal adhesion and its impact on stone development. Urol Res 23:71–79PubMed
38.
Zurück zum Zitat Khan SR (1995) Experimental calcium oxalate nephrolithiasis and the formation of human urinary stones. Scanning Microsc 9:89–100 (discussion 100–101)PubMed Khan SR (1995) Experimental calcium oxalate nephrolithiasis and the formation of human urinary stones. Scanning Microsc 9:89–100 (discussion 100–101)PubMed
39.
Zurück zum Zitat Reinking LN, Schmidt-Nielsen B (1981) Peristaltic flow of urine in the renal capillary collecting ducts of hamsters. Kidney Int 20:55–60PubMed Reinking LN, Schmidt-Nielsen B (1981) Peristaltic flow of urine in the renal capillary collecting ducts of hamsters. Kidney Int 20:55–60PubMed
40.
Zurück zum Zitat Khan SR, Hackett RL (1991) Retention of calcium oxalate crystals in renal tubules. Scanning Microsc 5:707–711 (discussion 711-702)PubMed Khan SR, Hackett RL (1991) Retention of calcium oxalate crystals in renal tubules. Scanning Microsc 5:707–711 (discussion 711-702)PubMed
41.
Zurück zum Zitat Evan AP, Weinman EJ, Wu XR, Lingeman JE, Worcester EM et al (2010) Comparison of the pathology of interstitial plaque in human ICSF stone patients to NHERF-1 and THP-null mice. Urol Res 38:439–452PubMedCentralPubMed Evan AP, Weinman EJ, Wu XR, Lingeman JE, Worcester EM et al (2010) Comparison of the pathology of interstitial plaque in human ICSF stone patients to NHERF-1 and THP-null mice. Urol Res 38:439–452PubMedCentralPubMed
42.
Zurück zum Zitat Liu Y, Mo L, Goldfarb DS, Evan AP, Liang F et al (2010) Progressive renal papillary calcification and ureteral stone formation in mice deficient for Tamm–Horsfall protein. Am J Physiol Renal Physiol 299:F469–F478PubMedCentralPubMed Liu Y, Mo L, Goldfarb DS, Evan AP, Liang F et al (2010) Progressive renal papillary calcification and ureteral stone formation in mice deficient for Tamm–Horsfall protein. Am J Physiol Renal Physiol 299:F469–F478PubMedCentralPubMed
43.
Zurück zum Zitat Khan SR, Glenton PA, Byer KJ (2006) Modeling of hyperoxaluric calcium oxalate nephrolithiasis: experimental induction of hyperoxaluria by hydroxy-l-proline. Kidney Int 70:914–923PubMed Khan SR, Glenton PA, Byer KJ (2006) Modeling of hyperoxaluric calcium oxalate nephrolithiasis: experimental induction of hyperoxaluria by hydroxy-l-proline. Kidney Int 70:914–923PubMed
44.
Zurück zum Zitat Khan SR, Glenton PA (2010) Experimental induction of calcium oxalate nephrolithiasis in mice. J Urol 184:1189–1196PubMedCentralPubMed Khan SR, Glenton PA (2010) Experimental induction of calcium oxalate nephrolithiasis in mice. J Urol 184:1189–1196PubMedCentralPubMed
46.
Zurück zum Zitat Bushinsky DA, Parker WR, Asplin JR (2000) Calcium phosphate supersaturation regulates stone formation in genetic hypercalciuric stone-forming rats. Kidney Int 57:550–560PubMed Bushinsky DA, Parker WR, Asplin JR (2000) Calcium phosphate supersaturation regulates stone formation in genetic hypercalciuric stone-forming rats. Kidney Int 57:550–560PubMed
47.
Zurück zum Zitat Khan SR, Glenton PA (2008) Calcium oxalate crystal deposition in kidneys of hypercalciuric mice with disrupted type IIa sodium-phosphate cotransporter. Am J Physiol Renal Physiol 294:F1109–F1115PubMedCentralPubMed Khan SR, Glenton PA (2008) Calcium oxalate crystal deposition in kidneys of hypercalciuric mice with disrupted type IIa sodium-phosphate cotransporter. Am J Physiol Renal Physiol 294:F1109–F1115PubMedCentralPubMed
48.
Zurück zum Zitat Chau H, El-Maadawy S, McKee MD, Tenenhouse HS (2003) Renal calcification in mice homozygous for the disrupted type IIa Na/Pi cotransporter gene Npt2. J Bone Miner Res 18:644–657PubMed Chau H, El-Maadawy S, McKee MD, Tenenhouse HS (2003) Renal calcification in mice homozygous for the disrupted type IIa Na/Pi cotransporter gene Npt2. J Bone Miner Res 18:644–657PubMed
49.
Zurück zum Zitat Weinman EJ, Mohanlal V, Stoycheff N, Wang F, Steplock D et al (2006) Longitudinal study of urinary excretion of phosphate, calcium, and uric acid in mutant NHERF-1 null mice. Am J Physiol Renal Physiol 290:F838–F843PubMed Weinman EJ, Mohanlal V, Stoycheff N, Wang F, Steplock D et al (2006) Longitudinal study of urinary excretion of phosphate, calcium, and uric acid in mutant NHERF-1 null mice. Am J Physiol Renal Physiol 290:F838–F843PubMed
50.
Zurück zum Zitat Khan SR, Canales BK (2011) Ultrastructural investigation of crystal deposits in Npt2a knockout mice: are they similar to human Randall’s plaques? J Urol 186:1107–1113PubMedCentralPubMed Khan SR, Canales BK (2011) Ultrastructural investigation of crystal deposits in Npt2a knockout mice: are they similar to human Randall’s plaques? J Urol 186:1107–1113PubMedCentralPubMed
51.
Zurück zum Zitat Nguyen HT, Woodard JC (1980) Intranephronic calculosis in rats: an ultrastructural study. Am J Pathol 100:39–56PubMedCentralPubMed Nguyen HT, Woodard JC (1980) Intranephronic calculosis in rats: an ultrastructural study. Am J Pathol 100:39–56PubMedCentralPubMed
52.
Zurück zum Zitat Khan SR, Finlayson B, Hackett RL (1982) Experimental calcium oxalate nephrolithiasis in the rat. Role of the renal papilla. Am J Pathol 107:59–69PubMedCentralPubMed Khan SR, Finlayson B, Hackett RL (1982) Experimental calcium oxalate nephrolithiasis in the rat. Role of the renal papilla. Am J Pathol 107:59–69PubMedCentralPubMed
53.
Zurück zum Zitat McKee MD, Nanci A, Khan SR (1995) Ultrastructural immunodetection of osteopontin and osteocalcin as major matrix components of renal calculi. J Bone Miner Res 10:1913–1929PubMed McKee MD, Nanci A, Khan SR (1995) Ultrastructural immunodetection of osteopontin and osteocalcin as major matrix components of renal calculi. J Bone Miner Res 10:1913–1929PubMed
54.
Zurück zum Zitat Khan SR (1997) Calcium phosphate/calcium oxalate crystal association in urinary stones: implications for heterogeneous nucleation of calcium oxalate. J Urol 157:376–383PubMed Khan SR (1997) Calcium phosphate/calcium oxalate crystal association in urinary stones: implications for heterogeneous nucleation of calcium oxalate. J Urol 157:376–383PubMed
55.
Zurück zum Zitat Meyer JL, Bergert JH, Smith LH (1975) Epitaxial relationships in urolithiasis: the calcium oxalate monohydrate-hydroxyapatite system. Clin Sci Mol Med 49:369–374PubMed Meyer JL, Bergert JH, Smith LH (1975) Epitaxial relationships in urolithiasis: the calcium oxalate monohydrate-hydroxyapatite system. Clin Sci Mol Med 49:369–374PubMed
56.
Zurück zum Zitat Achilles W, Jockel U, Schaper A, Burk M, Riedmiller H (1995) In vitro formation of “urinary stones”: generation of spherulites of calcium phosphate in gel and overgrowth with calcium oxalate using a new flow model of crystallization. Scanning Microsc 9:577–585PubMed Achilles W, Jockel U, Schaper A, Burk M, Riedmiller H (1995) In vitro formation of “urinary stones”: generation of spherulites of calcium phosphate in gel and overgrowth with calcium oxalate using a new flow model of crystallization. Scanning Microsc 9:577–585PubMed
57.
Zurück zum Zitat Khan SR, Finlayson B, Hackett RL (1984) Microstructure of calcium-oxalate foreign-body stones produced in rat bladder. Urol Res 12:54 Khan SR, Finlayson B, Hackett RL (1984) Microstructure of calcium-oxalate foreign-body stones produced in rat bladder. Urol Res 12:54
58.
Zurück zum Zitat Khan SR, Finlayson B, Thomas WC Jr, Hackett RL (1984) Relationship between experimentally induced crystalluria and relative supersaturation of various stone salts in rats. Urol Res 12:271–273PubMed Khan SR, Finlayson B, Thomas WC Jr, Hackett RL (1984) Relationship between experimentally induced crystalluria and relative supersaturation of various stone salts in rats. Urol Res 12:271–273PubMed
59.
Zurück zum Zitat Khan SR, Hackett RL (1987) Urolithogenesis of mixed foreign body stones. J Urol 138:1321–1328PubMed Khan SR, Hackett RL (1987) Urolithogenesis of mixed foreign body stones. J Urol 138:1321–1328PubMed
60.
Zurück zum Zitat Asplin JR, Mandel NS, Coe FL (1996) Evidence of calcium phosphate supersaturation in the loop of Henle. Am J Physiol 270:F604–F613PubMed Asplin JR, Mandel NS, Coe FL (1996) Evidence of calcium phosphate supersaturation in the loop of Henle. Am J Physiol 270:F604–F613PubMed
61.
Zurück zum Zitat Hojgaard I, Fornander AM, Nilsson MA, Tiselius HG (1999) The effect of pH changes on the crystallization of calcium salts in solutions with an ion composition corresponding to that in the distal tubule. Urol Res 27:409–416PubMed Hojgaard I, Fornander AM, Nilsson MA, Tiselius HG (1999) The effect of pH changes on the crystallization of calcium salts in solutions with an ion composition corresponding to that in the distal tubule. Urol Res 27:409–416PubMed
62.
Zurück zum Zitat Tiselius HG (2011) A hypothesis of calcium stone formation: an interpretation of stone research during the past decades. Urol Res 39:231–243PubMed Tiselius HG (2011) A hypothesis of calcium stone formation: an interpretation of stone research during the past decades. Urol Res 39:231–243PubMed
63.
Zurück zum Zitat Fasano JM, Khan SR (2001) Intratubular crystallization of calcium oxalate in the presence of membrane vesicles: an in vitro study. Kidney Int 59:169–178PubMed Fasano JM, Khan SR (2001) Intratubular crystallization of calcium oxalate in the presence of membrane vesicles: an in vitro study. Kidney Int 59:169–178PubMed
64.
Zurück zum Zitat Halperin ML, Cheema Dhadli S, Kamel KS (2006) Physiology of acid-base balance: links with kidney stone prevention. Semin Nephrol 26:441–446PubMed Halperin ML, Cheema Dhadli S, Kamel KS (2006) Physiology of acid-base balance: links with kidney stone prevention. Semin Nephrol 26:441–446PubMed
65.
Zurück zum Zitat Atmani F, Glenton PA, Khan SR (1998) Identification of proteins extracted from calcium oxalate and calcium phosphate crystals induced in the urine of healthy and stone forming subjects. Urol Res 26:201–207PubMed Atmani F, Glenton PA, Khan SR (1998) Identification of proteins extracted from calcium oxalate and calcium phosphate crystals induced in the urine of healthy and stone forming subjects. Urol Res 26:201–207PubMed
66.
Zurück zum Zitat Maslamani S, Glenton PA, Khan SR (2000) Changes in urine macromolecular composition during processing. J Urol 164:230–236PubMed Maslamani S, Glenton PA, Khan SR (2000) Changes in urine macromolecular composition during processing. J Urol 164:230–236PubMed
67.
Zurück zum Zitat Ryall RL, Chauvet MC, Grover PK (2005) Intracrystalline proteins and urolithiasis: a comparison of the protein content and ultrastructure of urinary calcium oxalate monohydrate and dihydrate crystals. BJU Int 96:654–663PubMed Ryall RL, Chauvet MC, Grover PK (2005) Intracrystalline proteins and urolithiasis: a comparison of the protein content and ultrastructure of urinary calcium oxalate monohydrate and dihydrate crystals. BJU Int 96:654–663PubMed
68.
Zurück zum Zitat Kohri K, Yasui T, Okada A, Hirose M, Hamamoto S et al (2012) Biomolecular mechanism of urinary stone formation involving osteopontin. Urol Res 40:623–637PubMed Kohri K, Yasui T, Okada A, Hirose M, Hamamoto S et al (2012) Biomolecular mechanism of urinary stone formation involving osteopontin. Urol Res 40:623–637PubMed
69.
Zurück zum Zitat Khan SR, Kok DJ (2004) Modulators of urinary stone formation. Front Biosci 9:1450–1482PubMed Khan SR, Kok DJ (2004) Modulators of urinary stone formation. Front Biosci 9:1450–1482PubMed
70.
Zurück zum Zitat Ryall RL (2004) Macromolecules and urolithiasis: parallels and paradoxes. Nephron Physiol 98:37–42 Ryall RL (2004) Macromolecules and urolithiasis: parallels and paradoxes. Nephron Physiol 98:37–42
71.
Zurück zum Zitat Sethman I, Grohe B, Kleebe H-J (2014) Replacement of hydroxyapatite by whewellite: implications for kidney-stone formation. Miner Mag 78:91–100 Sethman I, Grohe B, Kleebe H-J (2014) Replacement of hydroxyapatite by whewellite: implications for kidney-stone formation. Miner Mag 78:91–100
72.
Zurück zum Zitat Moe SM, Chen NX (2008) Mechanisms of vascular calcification in chronic kidney disease. J Am Soc Nephrol 19:213–216PubMed Moe SM, Chen NX (2008) Mechanisms of vascular calcification in chronic kidney disease. J Am Soc Nephrol 19:213–216PubMed
73.
Zurück zum Zitat Shanahan CM (2005) Vascular calcification. Curr Opin Nephrol Hypertens 14:361–367PubMed Shanahan CM (2005) Vascular calcification. Curr Opin Nephrol Hypertens 14:361–367PubMed
74.
Zurück zum Zitat Briet M, Burns KD (2012) Chronic kidney disease and vascular remodelling: molecular mechanisms and clinical implications. Clin Sci (Lond) 123:399–416 Briet M, Burns KD (2012) Chronic kidney disease and vascular remodelling: molecular mechanisms and clinical implications. Clin Sci (Lond) 123:399–416
75.
Zurück zum Zitat Jono S, McKee MD, Murry CE, Shioi A, Nishizawa Y et al (2000) Phosphate regulation of vascular smooth muscle cell calcification. Circ Res 87:E10–E17PubMed Jono S, McKee MD, Murry CE, Shioi A, Nishizawa Y et al (2000) Phosphate regulation of vascular smooth muscle cell calcification. Circ Res 87:E10–E17PubMed
76.
Zurück zum Zitat Kapustin AN, Davies JD, Reynolds JL, McNair R, Jones GT et al (2011) Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization. Circ Res 109:e1–e12PubMed Kapustin AN, Davies JD, Reynolds JL, McNair R, Jones GT et al (2011) Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization. Circ Res 109:e1–e12PubMed
77.
Zurück zum Zitat Kapustin AN, Shanahan CM (2012) Calcium regulation of vascular smooth muscle cell-derived matrix vesicles. Trends Cardiovasc Med 22:133–137PubMed Kapustin AN, Shanahan CM (2012) Calcium regulation of vascular smooth muscle cell-derived matrix vesicles. Trends Cardiovasc Med 22:133–137PubMed
78.
Zurück zum Zitat Shanahan CM, Crouthamel MH, Kapustin A, Giachelli CM (2011) Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ Res 109:697–711PubMedCentralPubMed Shanahan CM, Crouthamel MH, Kapustin A, Giachelli CM (2011) Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ Res 109:697–711PubMedCentralPubMed
79.
Zurück zum Zitat Shroff RC, Shanahan CM (2007) The vascular biology of calcification. Semin Dial 20:103–109PubMed Shroff RC, Shanahan CM (2007) The vascular biology of calcification. Semin Dial 20:103–109PubMed
80.
Zurück zum Zitat Jono S, Shioi A, Ikari Y, Nishizawa Y (2006) Vascular calcification in chronic kidney disease. J Bone Miner Metab 24:176–181PubMed Jono S, Shioi A, Ikari Y, Nishizawa Y (2006) Vascular calcification in chronic kidney disease. J Bone Miner Metab 24:176–181PubMed
81.
Zurück zum Zitat Schoppet M, Shroff RC, Hofbauer LC, Shanahan CM (2008) Exploring the biology of vascular calcification in chronic kidney disease: what’s circulating? Kidney Int 73:384–390PubMed Schoppet M, Shroff RC, Hofbauer LC, Shanahan CM (2008) Exploring the biology of vascular calcification in chronic kidney disease: what’s circulating? Kidney Int 73:384–390PubMed
82.
Zurück zum Zitat Murshed M, McKee MD (2010) Molecular determinants of extracellular matrix mineralization in bone and blood vessels. Curr Opin Nephrol Hypertens 19:359–365PubMed Murshed M, McKee MD (2010) Molecular determinants of extracellular matrix mineralization in bone and blood vessels. Curr Opin Nephrol Hypertens 19:359–365PubMed
83.
Zurück zum Zitat Byon CH, Javed A, Dai Q, Kappes JC, Clemens TL et al (2008) Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor RUNX2 by AKT signaling. J Biol Chem 283:15319–15327PubMedCentralPubMed Byon CH, Javed A, Dai Q, Kappes JC, Clemens TL et al (2008) Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor RUNX2 by AKT signaling. J Biol Chem 283:15319–15327PubMedCentralPubMed
84.
Zurück zum Zitat Sun Y, Byon CH, Yuan K, Chen J, Mao X et al (2012) Smooth muscle cell-specific RUNX2 deficiency inhibits vascular calcification. Circ Res 111:543–552PubMedCentralPubMed Sun Y, Byon CH, Yuan K, Chen J, Mao X et al (2012) Smooth muscle cell-specific RUNX2 deficiency inhibits vascular calcification. Circ Res 111:543–552PubMedCentralPubMed
85.
Zurück zum Zitat Tada Y, Yano S, Yamaguchi T, Okazaki K, Ogawa N et al (2013) Advanced glycation end products-induced vascular calcification is mediated by oxidative stress: functional roles of NAD(P)H-oxidase. Horm Metab Res 45:267–272PubMed Tada Y, Yano S, Yamaguchi T, Okazaki K, Ogawa N et al (2013) Advanced glycation end products-induced vascular calcification is mediated by oxidative stress: functional roles of NAD(P)H-oxidase. Horm Metab Res 45:267–272PubMed
86.
Zurück zum Zitat Watson KE, Bostrom K, Ravindranath R, Lam T, Norton B et al (1994) TGF-beta 1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify. J Clin Invest 93:2106–2113PubMedCentralPubMed Watson KE, Bostrom K, Ravindranath R, Lam T, Norton B et al (1994) TGF-beta 1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify. J Clin Invest 93:2106–2113PubMedCentralPubMed
87.
Zurück zum Zitat Irwin CL, Guzman RJ (2009) Matrix metalloproteinases in medial arterial calcification: potential mechanisms and actions. Vascular 17(Suppl 1):S40–S44PubMed Irwin CL, Guzman RJ (2009) Matrix metalloproteinases in medial arterial calcification: potential mechanisms and actions. Vascular 17(Suppl 1):S40–S44PubMed
88.
Zurück zum Zitat Pai A, Leaf EM, El-Abbadi M, Giachelli CM (2011) Elastin degradation and vascular smooth muscle cell phenotype change precede cell loss and arterial medial calcification in a uremic mouse model of chronic kidney disease. Am J Pathol 178:764–773PubMedCentralPubMed Pai A, Leaf EM, El-Abbadi M, Giachelli CM (2011) Elastin degradation and vascular smooth muscle cell phenotype change precede cell loss and arterial medial calcification in a uremic mouse model of chronic kidney disease. Am J Pathol 178:764–773PubMedCentralPubMed
89.
Zurück zum Zitat Basalyga DM, Simionescu DT, Xiong W, Baxter BT, Starcher BC et al (2004) Elastin degradation and calcification in an abdominal aorta injury model: role of matrix metalloproteinases. Circulation 110:3480–3487PubMedCentralPubMed Basalyga DM, Simionescu DT, Xiong W, Baxter BT, Starcher BC et al (2004) Elastin degradation and calcification in an abdominal aorta injury model: role of matrix metalloproteinases. Circulation 110:3480–3487PubMedCentralPubMed
90.
Zurück zum Zitat Vyavahare N, Jones PL, Tallapragada S, Levy RJ (2000) Inhibition of matrix metalloproteinase activity attenuates tenascin-C production and calcification of implanted purified elastin in rats. Am J Pathol 157:885–893PubMedCentralPubMed Vyavahare N, Jones PL, Tallapragada S, Levy RJ (2000) Inhibition of matrix metalloproteinase activity attenuates tenascin-C production and calcification of implanted purified elastin in rats. Am J Pathol 157:885–893PubMedCentralPubMed
91.
Zurück zum Zitat Schurgers LJ, Cranenburg EC, Vermeer C (2008) Matrix Gla-protein: the calcification inhibitor in need of vitamin K. Thromb Haemost 100:593–603PubMed Schurgers LJ, Cranenburg EC, Vermeer C (2008) Matrix Gla-protein: the calcification inhibitor in need of vitamin K. Thromb Haemost 100:593–603PubMed
92.
Zurück zum Zitat Shanahan CM, Proudfoot D, Farzaneh-Far A, Weissberg PL (1998) The role of Gla proteins in vascular calcification. Crit Rev Eukaryot Gene Expr 8:357–375PubMed Shanahan CM, Proudfoot D, Farzaneh-Far A, Weissberg PL (1998) The role of Gla proteins in vascular calcification. Crit Rev Eukaryot Gene Expr 8:357–375PubMed
93.
Zurück zum Zitat Meier M, Weng LP, Alexandrakis E, Ruschoff J, Goeckenjan G (2001) Tracheobronchial stenosis in Keutel syndrome. Eur Respir J 17:566–569PubMed Meier M, Weng LP, Alexandrakis E, Ruschoff J, Goeckenjan G (2001) Tracheobronchial stenosis in Keutel syndrome. Eur Respir J 17:566–569PubMed
94.
Zurück zum Zitat Luo G, Ducy P, McKee M, Pinero G, Loyer E et al (1997) Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386:78–81PubMed Luo G, Ducy P, McKee M, Pinero G, Loyer E et al (1997) Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386:78–81PubMed
95.
Zurück zum Zitat Murshed M, Schinke T, McKee M, Karsenty G (2004) Extracellular matrix mineralization is regulated locally; different roles of two gla-containing proteins. J Cell Biol 165:625–630PubMedCentralPubMed Murshed M, Schinke T, McKee M, Karsenty G (2004) Extracellular matrix mineralization is regulated locally; different roles of two gla-containing proteins. J Cell Biol 165:625–630PubMedCentralPubMed
96.
Zurück zum Zitat Farzaneh-Far A, Davies JD, Braam LA, Spronk HM, Proudfoot D et al (2001) A polymorphism of the human matrix gamma-carboxyglutamic acid protein promoter alters binding of an activating protein-1 complex and is associated with altered transcription and serum levels. J Biol Chem 276:32466–32473PubMed Farzaneh-Far A, Davies JD, Braam LA, Spronk HM, Proudfoot D et al (2001) A polymorphism of the human matrix gamma-carboxyglutamic acid protein promoter alters binding of an activating protein-1 complex and is associated with altered transcription and serum levels. J Biol Chem 276:32466–32473PubMed
97.
Zurück zum Zitat Herrmann SM, Whatling C, Brand E, Nicaud V, Gariepy J et al (2000) Polymorphisms of the human matrix gla protein (MGP) gene, vascular calcification, and myocardial infarction. Arterioscler Thromb Vasc Biol 20:2386–2393PubMed Herrmann SM, Whatling C, Brand E, Nicaud V, Gariepy J et al (2000) Polymorphisms of the human matrix gla protein (MGP) gene, vascular calcification, and myocardial infarction. Arterioscler Thromb Vasc Biol 20:2386–2393PubMed
98.
Zurück zum Zitat Herrmann M, Kinkeldey A, Jahnen-Dechent W (2012) Fetuin-A function in systemic mineral metabolism. Trends Cardiovasc Med 22:197–201PubMed Herrmann M, Kinkeldey A, Jahnen-Dechent W (2012) Fetuin-A function in systemic mineral metabolism. Trends Cardiovasc Med 22:197–201PubMed
99.
Zurück zum Zitat Jahnen-Dechent W, Heiss A, Schafer C, Ketteler M (2011) Fetuin-A regulation of calcified matrix metabolism. Circ Res 108:1494–1509PubMed Jahnen-Dechent W, Heiss A, Schafer C, Ketteler M (2011) Fetuin-A regulation of calcified matrix metabolism. Circ Res 108:1494–1509PubMed
100.
Zurück zum Zitat Jahnen-Dechent W, Schafer C, Ketteler M, McKee MD (2008) Mineral chaperones: a role for fetuin-A and osteopontin in the inhibition and regression of pathologic calcification. J Mol Med (Berl) 86:379–389 Jahnen-Dechent W, Schafer C, Ketteler M, McKee MD (2008) Mineral chaperones: a role for fetuin-A and osteopontin in the inhibition and regression of pathologic calcification. J Mol Med (Berl) 86:379–389
101.
Zurück zum Zitat Schinke T, Amendt C, Trindl A, Poschke O, Muller-Esterl W et al (1996) The serum protein alpha2-HS glycoprotein/fetuin inhibits apatite formation in vitro and in mineralizing calvaria cells. A possible role in mineralization and calcium homeostasis. J Biol Chem 271:20789–20796PubMed Schinke T, Amendt C, Trindl A, Poschke O, Muller-Esterl W et al (1996) The serum protein alpha2-HS glycoprotein/fetuin inhibits apatite formation in vitro and in mineralizing calvaria cells. A possible role in mineralization and calcium homeostasis. J Biol Chem 271:20789–20796PubMed
102.
Zurück zum Zitat Ketteler M, Wanner C, Metzger T, Bongartz P, Westenfeld R et al (2003) Deficiencies of calcium-regulatory proteins in dialysis patients: a novel concept of cardiovascular calcification in uremia. Kidney Int Suppl:S84–S87 Ketteler M, Wanner C, Metzger T, Bongartz P, Westenfeld R et al (2003) Deficiencies of calcium-regulatory proteins in dialysis patients: a novel concept of cardiovascular calcification in uremia. Kidney Int Suppl:S84–S87
103.
Zurück zum Zitat Huang HS, Ma MC, Chen CF, Chen J (2003) Lipid peroxidation and its correlations with urinary levels of oxalate, citric acid, and osteopontin in patients with renal calcium oxalate stones. Urology 62:1123–1128PubMed Huang HS, Ma MC, Chen CF, Chen J (2003) Lipid peroxidation and its correlations with urinary levels of oxalate, citric acid, and osteopontin in patients with renal calcium oxalate stones. Urology 62:1123–1128PubMed
104.
Zurück zum Zitat Tungsanga K, Sriboonlue P, Futrakul P, Yachantha C, Tosukhowong P (2005) Renal tubular cell damage and oxidative stress in renal stone patients and the effect of potassium citrate treatment. Urol Res 33:65–69PubMed Tungsanga K, Sriboonlue P, Futrakul P, Yachantha C, Tosukhowong P (2005) Renal tubular cell damage and oxidative stress in renal stone patients and the effect of potassium citrate treatment. Urol Res 33:65–69PubMed
105.
Zurück zum Zitat Boonla C, Wunsuwan R, Tungsanga K, Tosukhowong P (2007) Urinary 8-hydroxydeoxyguanosine is elevated in patients with nephrolithiasis. Urol Res 35:185–191PubMed Boonla C, Wunsuwan R, Tungsanga K, Tosukhowong P (2007) Urinary 8-hydroxydeoxyguanosine is elevated in patients with nephrolithiasis. Urol Res 35:185–191PubMed
106.
Zurück zum Zitat Schwille PO, Manoharan M, Schmiedl A (2005) Is idiopathic recurrent calcium urolithiasis in males a cellular disease? Laboratory findings in plasma, urine and erythrocytes, emphasizing the absence and presence of stones, oxidative and mineral metabolism: an observational study. Clin Chem Lab Med 43:590–600PubMed Schwille PO, Manoharan M, Schmiedl A (2005) Is idiopathic recurrent calcium urolithiasis in males a cellular disease? Laboratory findings in plasma, urine and erythrocytes, emphasizing the absence and presence of stones, oxidative and mineral metabolism: an observational study. Clin Chem Lab Med 43:590–600PubMed
107.
Zurück zum Zitat Escobar C, Byer KJ, Khaskheli H, Khan SR (2008) Apatite induced renal epithelial injury: insight into the pathogenesis of kidney stones. J Urol 180:379–387PubMedCentralPubMed Escobar C, Byer KJ, Khaskheli H, Khan SR (2008) Apatite induced renal epithelial injury: insight into the pathogenesis of kidney stones. J Urol 180:379–387PubMedCentralPubMed
108.
Zurück zum Zitat Grewal JS, Tsai JY, Glenton PA, Byer KJ, Khan SR (2002) Oxalate toxicity induces an immunosuppressive lipocalin, alpha 1-microglobulin in LLC-PK cells via intermediating reactive oxygen species. J Am Soc Nephrol 13:493A Grewal JS, Tsai JY, Glenton PA, Byer KJ, Khan SR (2002) Oxalate toxicity induces an immunosuppressive lipocalin, alpha 1-microglobulin in LLC-PK cells via intermediating reactive oxygen species. J Am Soc Nephrol 13:493A
109.
Zurück zum Zitat Grewal JS, Tsai JY, Khan SR (2005) Oxalate-inducible AMBP gene and its regulatory mechanism in renal tubular epithelial cells. Biochem J 387:609–616PubMedCentralPubMed Grewal JS, Tsai JY, Khan SR (2005) Oxalate-inducible AMBP gene and its regulatory mechanism in renal tubular epithelial cells. Biochem J 387:609–616PubMedCentralPubMed
110.
Zurück zum Zitat Habibzadegah-Tari P, Byer KG, Khan SR (2006) Reactive oxygen species mediated calcium oxalate crystal-induced expression of MCP-1 in HK-2 cells. Urol Res 34:26–36PubMed Habibzadegah-Tari P, Byer KG, Khan SR (2006) Reactive oxygen species mediated calcium oxalate crystal-induced expression of MCP-1 in HK-2 cells. Urol Res 34:26–36PubMed
111.
Zurück zum Zitat Hatanaka Y, Umekawa T, Kurita T, Khan SR (2002) Angiotensin II type 1 receptor blockade prevents calcification in ethylene glycol treated rat kidney—relation to kidney inflammation. J Am Soc Nephrol 13:576A Hatanaka Y, Umekawa T, Kurita T, Khan SR (2002) Angiotensin II type 1 receptor blockade prevents calcification in ethylene glycol treated rat kidney—relation to kidney inflammation. J Am Soc Nephrol 13:576A
112.
Zurück zum Zitat Thamilselvan S, Byer KJ, Hackett RL, Khan SR (2000) Free radical scavengers, catalase and superoxide dismutase provide protection from oxalate-associated injury to LLC-PK1 and MDCK cells. J Urol 164:224–229PubMed Thamilselvan S, Byer KJ, Hackett RL, Khan SR (2000) Free radical scavengers, catalase and superoxide dismutase provide protection from oxalate-associated injury to LLC-PK1 and MDCK cells. J Urol 164:224–229PubMed
113.
Zurück zum Zitat Thamilselvan S, Hackett RL, Khan SR (1997) Lipid peroxidation in ethylene glycol induced hyperoxaluria and calcium oxalate nephrolithiasis. J Urol 157:1059–1063PubMed Thamilselvan S, Hackett RL, Khan SR (1997) Lipid peroxidation in ethylene glycol induced hyperoxaluria and calcium oxalate nephrolithiasis. J Urol 157:1059–1063PubMed
114.
Zurück zum Zitat Umekawa T, Kurita T, Khan SR (2002) Calcium oxalate monohydrateand, brushite and oxalate ions stimulate MCP-1 production in NRK 52E cells. J Urol 167:258 Umekawa T, Kurita T, Khan SR (2002) Calcium oxalate monohydrateand, brushite and oxalate ions stimulate MCP-1 production in NRK 52E cells. J Urol 167:258
115.
Zurück zum Zitat Aihara K, Byer KJ, Khan SR (2003) Calcium phosphate-induced renal epithelial injury and stone formation: involvement of reactive oxygen species. Kidney Int 64:1283–1291PubMed Aihara K, Byer KJ, Khan SR (2003) Calcium phosphate-induced renal epithelial injury and stone formation: involvement of reactive oxygen species. Kidney Int 64:1283–1291PubMed
116.
Zurück zum Zitat Joshi S, Saylor BT, Wang W, Peck AB, Khan SR (2012) Apocynin-treatment reverses hyperoxaluria induced changes in NADPH oxidase system expression in rat kidneys: a transcriptional study. PLoS One 7:e47738PubMedCentralPubMed Joshi S, Saylor BT, Wang W, Peck AB, Khan SR (2012) Apocynin-treatment reverses hyperoxaluria induced changes in NADPH oxidase system expression in rat kidneys: a transcriptional study. PLoS One 7:e47738PubMedCentralPubMed
117.
Zurück zum Zitat Zuo J, Khan A, Glenton PA, Khan SR (2011) Effect of NADPH oxidase inhibition on the expression of kidney injury molecule and calcium oxalate crystal deposition in hydroxy-l-proline-induced hyperoxaluria in the male Sprague–Dawley rats. Nephrol Dial Transplant 26:1785–1796PubMedCentralPubMed Zuo J, Khan A, Glenton PA, Khan SR (2011) Effect of NADPH oxidase inhibition on the expression of kidney injury molecule and calcium oxalate crystal deposition in hydroxy-l-proline-induced hyperoxaluria in the male Sprague–Dawley rats. Nephrol Dial Transplant 26:1785–1796PubMedCentralPubMed
118.
Zurück zum Zitat Umekawa T, Tsuji H, Uemura H, Khan SR (2009) Superoxide from NADPH oxidase as second messenger for the expression of osteopontin and monocyte chemoattractant protein-1 in renal epithelial cells exposed to calcium oxalate crystals. BJU Int 104:115–120PubMedCentralPubMed Umekawa T, Tsuji H, Uemura H, Khan SR (2009) Superoxide from NADPH oxidase as second messenger for the expression of osteopontin and monocyte chemoattractant protein-1 in renal epithelial cells exposed to calcium oxalate crystals. BJU Int 104:115–120PubMedCentralPubMed
119.
Zurück zum Zitat Umekawa T, Byer K, Uemura H, Khan SR (2005) Diphenyleneiodium (DPI) reduces oxalate ion- and calcium oxalate monohydrate and brushite crystal-induced upregulation of MCP-1 in NRK 52E cells. Nephrol Dial Transplant 20:870–878PubMed Umekawa T, Byer K, Uemura H, Khan SR (2005) Diphenyleneiodium (DPI) reduces oxalate ion- and calcium oxalate monohydrate and brushite crystal-induced upregulation of MCP-1 in NRK 52E cells. Nephrol Dial Transplant 20:870–878PubMed
120.
Zurück zum Zitat Umekawa T, Chegini N, Khan SR (2003) Increased expression of monocyte chemoattractant protein-1 (MCP-1) by renal epithelial cells in culture on exposure to calcium oxalate, phosphate and uric acid crystals. Nephrol Dial Transplant 18:664–669PubMed Umekawa T, Chegini N, Khan SR (2003) Increased expression of monocyte chemoattractant protein-1 (MCP-1) by renal epithelial cells in culture on exposure to calcium oxalate, phosphate and uric acid crystals. Nephrol Dial Transplant 18:664–669PubMed
121.
Zurück zum Zitat Khan SR, Khan A, Byer KJ (2011) Temporal changes in the expression of mRNA of NADPH oxidase subunits in renal epithelial cells exposed to oxalate or calcium oxalate crystals. Nephrol Dial Transplant 26:1778–1785PubMedCentralPubMed Khan SR, Khan A, Byer KJ (2011) Temporal changes in the expression of mRNA of NADPH oxidase subunits in renal epithelial cells exposed to oxalate or calcium oxalate crystals. Nephrol Dial Transplant 26:1778–1785PubMedCentralPubMed
122.
Zurück zum Zitat Umekawa T, Hatanaka Y, Kurita T, Khan SR (2004) Effect of angiotensin II receptor blockage on osteopontin expression and calcium oxalate crystal deposition in rat kidneys. J Am Soc Nephrol 15:635–644PubMed Umekawa T, Hatanaka Y, Kurita T, Khan SR (2004) Effect of angiotensin II receptor blockage on osteopontin expression and calcium oxalate crystal deposition in rat kidneys. J Am Soc Nephrol 15:635–644PubMed
123.
Zurück zum Zitat Gambaro G, D’Angelo A, Fabris A, Tosetto E, Anglani F et al (2004) Crystals, Randall’s plaques and renal stones: do bone and atherosclerosis teach us something? J Nephrol 17:774–777PubMed Gambaro G, D’Angelo A, Fabris A, Tosetto E, Anglani F et al (2004) Crystals, Randall’s plaques and renal stones: do bone and atherosclerosis teach us something? J Nephrol 17:774–777PubMed
124.
Zurück zum Zitat Khan SR, Johnson JM, Peck AB, Cornelius JG, Glenton PA (2002) Expression of osteopontin in rat kidneys: induction during ethylene glycol induced calcium oxalate nephrolithiasis. J Urol 168:1173–1181PubMed Khan SR, Johnson JM, Peck AB, Cornelius JG, Glenton PA (2002) Expression of osteopontin in rat kidneys: induction during ethylene glycol induced calcium oxalate nephrolithiasis. J Urol 168:1173–1181PubMed
125.
Zurück zum Zitat Gokhale JA, Glenton PA, Khan SR (1996) Localization of Tamm–Horsfall protein and osteopontin in a rat nephrolithiasis model. Nephron 73:456–461PubMed Gokhale JA, Glenton PA, Khan SR (1996) Localization of Tamm–Horsfall protein and osteopontin in a rat nephrolithiasis model. Nephron 73:456–461PubMed
126.
Zurück zum Zitat Khan A, Wang W, Khan SR (2013) Calcium oxalate nephrolithiasis and expression of matrix GLA protein in the kidneys. World J Urol 32:123–130 Khan A, Wang W, Khan SR (2013) Calcium oxalate nephrolithiasis and expression of matrix GLA protein in the kidneys. World J Urol 32:123–130
127.
Zurück zum Zitat Yasui T, Fujita K, Sasaki S, Sato M, Sugimoto M et al (1999) Expression of bone matrix proteins in urolithiasis model rats. Urol Res 27:255–261PubMed Yasui T, Fujita K, Sasaki S, Sato M, Sugimoto M et al (1999) Expression of bone matrix proteins in urolithiasis model rats. Urol Res 27:255–261PubMed
128.
Zurück zum Zitat Khan SR, Joshi S, Wang W, Peck AB (2014) Regulation of Macromolecular modulators of urinary stone formation by reactive oxygen species: transcriptional study in an animal model of hyperoxaluria. Am J Physiol Renal Physiol 306:F1285–F1295 Khan SR, Joshi S, Wang W, Peck AB (2014) Regulation of Macromolecular modulators of urinary stone formation by reactive oxygen species: transcriptional study in an animal model of hyperoxaluria. Am J Physiol Renal Physiol 306:F1285–F1295
129.
Zurück zum Zitat Canales BK, Anderson L, Higgins L, Frethem C, Ressler A et al (2009) Proteomic analysis of a matrix stone: a case report. Urol Res 37:323–329PubMed Canales BK, Anderson L, Higgins L, Frethem C, Ressler A et al (2009) Proteomic analysis of a matrix stone: a case report. Urol Res 37:323–329PubMed
130.
Zurück zum Zitat Kumar V, Farell G, Yu S, Harrington S, Fitzpatrick L et al (2006) Cell biology of pathologic renal calcification: contribution of crystal transcytosis, cell-mediated calcification, and nanoparticles. J Investig Med 54:412–424PubMed Kumar V, Farell G, Yu S, Harrington S, Fitzpatrick L et al (2006) Cell biology of pathologic renal calcification: contribution of crystal transcytosis, cell-mediated calcification, and nanoparticles. J Investig Med 54:412–424PubMed
131.
Zurück zum Zitat Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15:1–12PubMed Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15:1–12PubMed
132.
Zurück zum Zitat Zeisberg M, Bonner G, Maeshima Y, Colorado P, Muller GA et al (2001) Renal fibrosis: collagen composition and assembly regulates epithelial-mesenchymal transdifferentiation. Am J Pathol 159:1313–1321PubMedCentralPubMed Zeisberg M, Bonner G, Maeshima Y, Colorado P, Muller GA et al (2001) Renal fibrosis: collagen composition and assembly regulates epithelial-mesenchymal transdifferentiation. Am J Pathol 159:1313–1321PubMedCentralPubMed
133.
Zurück zum Zitat Shoshani O, Zipori D (2011) Transition of endothelium to cartilage and bone. Cell Stem Cell 8:10–11PubMed Shoshani O, Zipori D (2011) Transition of endothelium to cartilage and bone. Cell Stem Cell 8:10–11PubMed
134.
Zurück zum Zitat Stejskal D, Karpisek M, Vrtal R, Student V, Solichova P et al (2008) Urine fetuin-A values in relation to the presence of urolithiasis. BJU Int 101:1151–1154PubMed Stejskal D, Karpisek M, Vrtal R, Student V, Solichova P et al (2008) Urine fetuin-A values in relation to the presence of urolithiasis. BJU Int 101:1151–1154PubMed
135.
Zurück zum Zitat Salama RH, Alghasham A, Mostafa MS, El-Moniem AE (2012) Bone morphogenetic protein-2 will be a novel biochemical marker in urinary tract infections and stone formation. Clin Biochem 45:766–769PubMed Salama RH, Alghasham A, Mostafa MS, El-Moniem AE (2012) Bone morphogenetic protein-2 will be a novel biochemical marker in urinary tract infections and stone formation. Clin Biochem 45:766–769PubMed
136.
Zurück zum Zitat Gao B, Yasui T, Itoh Y, Tozawa K, Hayashi Y et al (2007) A polymorphism of matrix Gla protein gene is associated with kidney stones. J Urol 177:2361–2365PubMed Gao B, Yasui T, Itoh Y, Tozawa K, Hayashi Y et al (2007) A polymorphism of matrix Gla protein gene is associated with kidney stones. J Urol 177:2361–2365PubMed
137.
Zurück zum Zitat Lu X, Gao B, Liu Z, Tian X, Mao X et al (2012) A polymorphism of matrix Gla protein gene is associated with kidney stone in the Chinese Han population. Gene 511:127–130PubMed Lu X, Gao B, Liu Z, Tian X, Mao X et al (2012) A polymorphism of matrix Gla protein gene is associated with kidney stone in the Chinese Han population. Gene 511:127–130PubMed
138.
Zurück zum Zitat Jia Z, Wang S, Tang J, He D, Cui L et al (2014) Does crystal deposition in genetic hypercalciuric rat kidney tissue share similarities with bone formation? Urology 83:509 (e507–509, e514) Jia Z, Wang S, Tang J, He D, Cui L et al (2014) Does crystal deposition in genetic hypercalciuric rat kidney tissue share similarities with bone formation? Urology 83:509 (e507–509, e514)
139.
Zurück zum Zitat Kageyama S, Ohtawara Y, Fujita K, Watanabe T, Ushiyama T et al (1996) Microlith formation in vitro by Madin Darby canine kidney (MDCK) cells. Int J Urol 3:23–26PubMed Kageyama S, Ohtawara Y, Fujita K, Watanabe T, Ushiyama T et al (1996) Microlith formation in vitro by Madin Darby canine kidney (MDCK) cells. Int J Urol 3:23–26PubMed
140.
Zurück zum Zitat Naito Y, Ohtawara Y, Kageyama S, Nakano M, Ichiyama A et al (1997) Morphological analysis of renal cell culture models of calcium phosphate stone formation. Urol Res 25:59–65PubMed Naito Y, Ohtawara Y, Kageyama S, Nakano M, Ichiyama A et al (1997) Morphological analysis of renal cell culture models of calcium phosphate stone formation. Urol Res 25:59–65PubMed
141.
Zurück zum Zitat Senzaki H, Yasui T, Okada A, Ito Y, Tozawa K et al (2004) Alendronate inhibits urinary calcium microlith formation in a three-dimensional culture model. Urol Res 32:223–228PubMed Senzaki H, Yasui T, Okada A, Ito Y, Tozawa K et al (2004) Alendronate inhibits urinary calcium microlith formation in a three-dimensional culture model. Urol Res 32:223–228PubMed
142.
Zurück zum Zitat Habibovic P, Bassett DC, Doillon CJ, Gerard C, McKee MD et al (2010) Collagen biomineralization in vivo by sustained release of inorganic phosphate ions. Adv Mater 22:1858–1862PubMed Habibovic P, Bassett DC, Doillon CJ, Gerard C, McKee MD et al (2010) Collagen biomineralization in vivo by sustained release of inorganic phosphate ions. Adv Mater 22:1858–1862PubMed
143.
Zurück zum Zitat Golub EE (2010) Biomineralization and matrix vesicles in biology and pathology. Semin Immunopathol 33:409–417 Golub EE (2010) Biomineralization and matrix vesicles in biology and pathology. Semin Immunopathol 33:409–417
144.
Zurück zum Zitat Khan SR, Atmani F, Glenton P, Hou Z, Talham DR et al (1996) Lipids and membranes in the organic matrix of urinary calcific crystals and stones. Calcif Tissue Int 59:357–365PubMed Khan SR, Atmani F, Glenton P, Hou Z, Talham DR et al (1996) Lipids and membranes in the organic matrix of urinary calcific crystals and stones. Calcif Tissue Int 59:357–365PubMed
145.
Zurück zum Zitat Khan SR, Glenton PA, Backov R, Talham DR (2002) Presence of lipids in urine, crystals and stones: implications for the formation of kidney stones. Kidney Int 62:2062–2072PubMed Khan SR, Glenton PA, Backov R, Talham DR (2002) Presence of lipids in urine, crystals and stones: implications for the formation of kidney stones. Kidney Int 62:2062–2072PubMed
146.
Zurück zum Zitat Khan SR, Shevock PN, Hackett RL (1988) Invitro precipitation of calcium-oxalate in the presence of whole matrix or lipid components of the urinary stones. J Urol 139:418–422PubMed Khan SR, Shevock PN, Hackett RL (1988) Invitro precipitation of calcium-oxalate in the presence of whole matrix or lipid components of the urinary stones. J Urol 139:418–422PubMed
147.
Zurück zum Zitat Khan SR, Maslamani SA, Atmani F, Glenton PA, Opalko FJ et al (2000) Membranes and their constituents as promoters of calcium oxalate crystal formation in human urine. Calcif Tissue Int 66:90–96PubMed Khan SR, Maslamani SA, Atmani F, Glenton PA, Opalko FJ et al (2000) Membranes and their constituents as promoters of calcium oxalate crystal formation in human urine. Calcif Tissue Int 66:90–96PubMed
148.
Zurück zum Zitat Silva Marques J, Pinto FJ (2014) The vulnerable plaque: current concepts and future perspectives on coronary morphology, composition and wall stress imaging. Rev Port Cardiol 33:101–110 Silva Marques J, Pinto FJ (2014) The vulnerable plaque: current concepts and future perspectives on coronary morphology, composition and wall stress imaging. Rev Port Cardiol 33:101–110
Metadaten
Titel
Unified theory on the pathogenesis of Randall’s plaques and plugs
verfasst von
Saeed R. Khan
Benjamin K. Canales
Publikationsdatum
01.01.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Urolithiasis / Ausgabe Sonderheft 1/2015
Print ISSN: 2194-7228
Elektronische ISSN: 2194-7236
DOI
https://doi.org/10.1007/s00240-014-0705-9

Weitere Artikel der Sonderheft 1/2015

Urolithiasis 1/2015 Zur Ausgabe

Neu im Fachgebiet Urologie

19.04.2024 | EAU 2024 | Kongressbericht | Nachrichten

Ureterstriktur: Innovative OP-Technik bewährt sich

19.04.2024 | EAU 2024 | Kongressbericht | Nachrichten

Prostatakarzinom: EU initiiert neues Screeningkonzept

19.04.2024 | EAU 2024 | Kongressbericht | Nachrichten

Blasenkarzinom – Biomarker statt Zytologie?

Update Urologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.