Skip to main content

Advertisement

Log in

Effects of Repeated Seafood Consumption on Urinary Excretion of Arsenic Species by Volunteers

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Arsenic (As) is a known human carcinogen and widely distributed in the environment. The main route of As exposure in the general population is through food and drinking water. Seafood harvested in Korea contains high-level organoarsenics such as arsenobetaine, arsenocholine, and arsenosugars, which are much less harmful than inorganic arsenics. However, for those who eat large amounts of seafood it is important to understand whether seafood consumption affects urinary levels of inorganic As metabolites such as arsenite, arsenate, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA). In this study we investigated urinary As metabolites (inorganic As, MMA[V], DMA[V]) and some biological indexes such as AST, GSH, GPX, lipid peroxidation, and uric acid in volunteer study subjects (seven males and nine females). Total urinary As metabolites were analyzed by the hydride generation method, followed by arsenic speciation using HPLC with ICP-mass spectrometry. Study subjects refrained from eating seafood for 3 days prior to the first urine collection and then ingested seafood daily for 6 consecutive days. The first voided urine of the morning was collected from each subject the first day of the consecutive 6 days of seafood ingestion but prior to the first seafood meal. The first voided urine of the morning was also collected on days 1, 2, 3, 4, 5, 6, 7, 10, and 14 after seafood ingestion. The daily mean intake of total As was 6.98 mg, comprised of 4.71 mg of seaweed (67%), 1.74 mg of flat fish (25%), and 0.53 mg of conch (8%). We observed a substantial increase in total urinary As metabolites for subjects consuming seafood from day 1, which recovered to control level at day 10. The increase in total urinary As metabolites was attributed to the increase in DMA, which is a more harmful metabolite than organoarsenics. However, no significant changes in response biological indexes were observed. These results suggest that it is necessary to evaluate As metabolism when assessing the exposure to inorganic As and potential chronic health effects of seafood consumption in Korea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • ACGIH (2004) Threshold limit values for chemical substances and physical agents and biological exposure indices. American Conference of Governmental Industrial Hygienists, Cincinnati, OH

  • Andrewes P, Demarini DM, Funasaka K, Wallace K, Lai VWM, Sun H, Cullen WR, Kitchin KT (2004) Do arsenosugars pose a risk to human health? The comparative toxicities of a trivalent and pentavalent arsenosugar. Environ Sci Technol 38:4140–4148. doi:10.1021/es035440f

    Article  CAS  Google Scholar 

  • ATSDR (2007) Toxicological profile for arsenic. Agency for Toxic Substances and Disease Registry, Atlanta, GA

    Google Scholar 

  • Aydin A, Orhanb H, Sayala A, Ozatac M, Gonul SG, Isimer A (2001) Oxidative stress and nitric oxide related parameters in type II diabetes mellitus: effects of glycemic control. Clin Biochem 34:65–70. doi:10.1016/S0009-9120(00)00199-5

    Article  CAS  Google Scholar 

  • Bashir S, Sharma Y, Irshad M, Nag TC, Tiwari M, Kabra M, Dogra TD (2006) Arsenic induced apoptosis in rat following repeated 60 days exposure. Toxicology 217:63–70. doi:10.1016/j.tox.2005.08.023

    Article  CAS  Google Scholar 

  • Borak J, Hosgood HD (2007) Seafood arsenic: implications for human risk assessment. Regul Toxicol Pharmacol 47:204–212. doi:10.1016/j.yrtph.2006.09.005

    Article  CAS  Google Scholar 

  • Buchet JP, Lauwerys R, Roels H (1981) Comparison of the urinary excretion of arsenic metabolites after a single oral dose of sodium arsenite, monomethylarsonate, or dimethylarsinate in man. Int Arch Occup Environ Health 48:71–79. doi:10.1007/BF00405933

    Article  CAS  Google Scholar 

  • Chang SI, Jin B, Youn P, Park C, Park JD, Ryu DY (2007) Arsenic-induced toxicity and the protective role of ascorbic acid in mouse testis. Toxicol Appl Pharmacol 218:196–203. doi:10.1016/j.taap.2006.11.009

    Article  CAS  Google Scholar 

  • Cocker J, Morton J, Warren N, Wheeler JP, Garrod ANI (2006) Biomonitoring for chromium and arsenic in timber treatment plant workers exposed to CCA wood preservatives. Ann Occup Hyg 50:517–525. doi:10.1093/annhyg/mel009

    Article  CAS  Google Scholar 

  • Cohen SM, Ohnishi T, Arnold LL, Le XC (2006) Arsenic-induced bladder cancer in an animal model. Toxicol Appl Pharmacol 222:258–263. doi:10.1016/j.taap.2006.10.010

    Article  Google Scholar 

  • Dabeka RW, McKenzie AD, Lacroix GM, Cleroux C, Bowe S, Graham RA, Conacher HB, Verdier P (1993) Survey of arsenic in total diet food composites and estimation of the dietary intake of arsenic by Canadian adults and children. J AOAC Int 76:14–25

    CAS  Google Scholar 

  • Francesconi KA, Tanggaard R, Mckenzie CJ, Goessler W (2002) Arsenic metabolites in human urine after ingestion of an arsenosugar. Clin Chem 48:92–101

    CAS  Google Scholar 

  • Han B, Jeng WL, Chen RY, Fang GT, Hung TC, Tseng RJ (1998) Estimation of target hazard quotients and potential health risks for metals by consumption of seafood in Taiwan. Arch Environ Contam Toxicol 35:711–720. doi:10.1007/s002449900535

    Article  CAS  Google Scholar 

  • Hansen HR, Raab A, Francesconi KA, Feldmann J (2003) Metabolism of arsenic by sheep chronically exposed to arsenosugars as a normal part of their diet. 1. Quantitative intake, uptake and excretion. Environ Sci Technol 37:845–851. doi:10.1021/es026074n

    Article  CAS  Google Scholar 

  • Healy SM, Zakharyan RA, Aposhian HV (1997) Enzymatic methylation of arsenic compounds: IV. In vitro and in vivo deficiency of the methylation of arsenite and monomethylarsonic acid in the guinea pig. Mutat Res 386:229–239. doi:10.1016/S1383-5742(97)00014-8

    Article  CAS  Google Scholar 

  • Heinrich-Ramm R, Mindt-Prufert S, Szadkowski S (2002) Arsenic species excretion after controlled seafood consumprion. J Chromatogr B 778:263–273. doi:10.1016/S0378-4347(01)00443-1

    Article  CAS  Google Scholar 

  • Heitland P, Köster HD (2008) Fast determination of arsenic species and total arsenic in urine by HPLC-ICP-MS: concentration ranges for unexposed German inhabitants and clinical case studies. J Anal Toxicol 32:308–314

    CAS  Google Scholar 

  • Hopenhayn C, Huang B, Christian J, Peralta C, Ferreccio C, Atallah R, Kalman D (2003) Profile of urinary arsenic metabolites during pregnancy. Environ Health Perspect 111:1888–1891

    CAS  Google Scholar 

  • Hsueh YM, Hsu MK, Chiou HY, Yang MH, Huang CC, Chen CJ (2002) Urinary arsenic speciation in subjects with or without restriction from seafood dietary intake. Toxicol Lett 133:83–91. doi:10.1016/S0378-4274(02)00087-5

    Article  CAS  Google Scholar 

  • Huang Y, Zhang J, McHenry KT, Kim MM, Zeng W, Lopez-Pajares V, Dibble CC, Mizgerd JP, Yuan ZM (2008) Induction of cytoplasmic accumulation of p53: a mechanism for low levels of arsenic exposure to predispose cells for malignant transformation. Cancer Res 68:9131–9136. doi:10.1158/0008-5472.CAN-08-3025

    Article  CAS  Google Scholar 

  • Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16. doi:10.1016/S0378-4274(02)00084-X

    Article  CAS  Google Scholar 

  • Hughes MF (2006) Biomarkers of exposure: a case study with inorganic arsenic. Environ Health Perspect 114:1790–1796

    CAS  Google Scholar 

  • Le XC, Cullen WR, Reimer KJ (1993) Determination of urinary arsenic and impact of dietary arsenic intake. Talanta 40:185–193. doi:10.1016/0039-9140(93)80320-Q

    Article  CAS  Google Scholar 

  • Le XC, Cullen WR, Reimer KJ (1994) Human urinary arsenic excretion after one-time ingestion of seaweed, crab, and shrimp. Clin Chem 40:617–624

    CAS  Google Scholar 

  • Link B, Gabrio T, Piechotowski I, Zöllner I, Schwenk M (2007) Baden-Wuerttemberg environmental health survey (BW-EHS) from 1996 to 2003: toxic metals in blood and urine of children. Int J Hyg Environ Health 210:357–371. doi:10.1016/j.ijheh.2007.01.031

    Article  CAS  Google Scholar 

  • Liu CW, Liang CP, Huang FM, Hsueh YM (2006) Assessing the human health risks from exposure of inorganic arsenic through oyster (Crassostrea gigas) consumption in Taiwan. Sci Total Environ 361:57–66. doi:10.1016/j.scitotenv.2005.06.005

    Article  CAS  Google Scholar 

  • Loffredo CA, Aposhian HV, Cebrian ME, Yamauchi H, Silbergeld EK (2003) Variability in human metabolism of arsenic. Environ Res 92:85–91. doi:10.1016/S0013-9351(02)00081-6

    Article  CAS  Google Scholar 

  • Ma M, Le XC (1998) Effect of arsenosugar ingestion on urinary arsenic speciation. Clin Chem 44:539–550

    CAS  Google Scholar 

  • MacIntosh DL, Williams PL, Hunter DJ, Sampson LA, Morris SC, Willett WC, Rimm EB (1997) Evaluation of a food frequency questionnaire-food composition approach for estimating dietary intake of inorganic arsenic and methylmercury. Cancer Epidemiol Biomarkers Prev 6:1043–1050

    CAS  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235. doi:10.1016/S0039-9140(02)00268-0

    Article  CAS  Google Scholar 

  • Morton J, Mason H (2006) Speciation of arsenic compounds in urine from occupationally unexposed and exposed persons in the U.K. using a routine LC-ICP-MS method. J Anal Toxicol 30:293–301

    CAS  Google Scholar 

  • Navas-Acien A, Sharrett AR, Silbergeld EK, Schwarz BS, Nachman KE, Burke TA, Guallar E (2005) Arsenic exposure and cardiovascular disease: a systematic review of the epidemiologic evidence. Am J Epidemiol 162:1037–1049. doi:10.1093/aje/kwi330

    Article  Google Scholar 

  • Park KS, Kim JS, Lee HM, Pyo H, Kim ST, Lee KB (2005) Speciation of six arsenic compounds in Korean seafood samples by HPLC-ICP-MS. Key Engin Mat 277–279:431–437. doi:10.4028/www.scientific.net/KEM.277-279.431

    Article  Google Scholar 

  • Petrick JS, Ayala-Fierro F, Cullen WR, Carter DE, Aposhian HV (2000) Monomethylarsonous acid (MMAIII) is more toxic than arsenite in Chang human hepatocytes. Toxicol Appl Pharmacol 163:203–207. doi:10.1006/taap.1999.8872

    Article  CAS  Google Scholar 

  • Pi J, Yamauchi H, Kumagai Y, Sun G, Yoshida T, Aikawa H, Hopenhayn-Rich C, Shimojo N (2002) Evidence for induction of oxidative stress caused by chronic exposure of Chinese residents to arsenic contained in drinking water. Environ Health Perspect 110:331–336

    CAS  Google Scholar 

  • Ray A, Roy S, Agarwall S, Bhattacharya S (2008) As2O3 toxicity in rat heptocytes: manifestation of caspase-mediated apoptosis. Toxicol Ind Health 24:643–653. doi:10.1177/0748233708100370

    Article  CAS  Google Scholar 

  • Styblo M, Serves SV, Cullen WR, Thomas DJ (1997) Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols. Chem Res Toxicol 10:27–33. doi:10.1021/tx960139g

    Article  CAS  Google Scholar 

  • Styblo M, Razo LMD, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR, Thomas DJ (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 74:289–299. doi:10.1007/s002040000134

    Article  CAS  Google Scholar 

  • Tagesson C, Kallberg M, Wingren G (1996) Urinary malondialdehyde and 8-hydroxydeoxyguanosine as potential markers of oxidative stress in industrial art glass works. Int Arch Occup Environ Health 96:5–13. doi:10.1007/BF02630732

    Article  Google Scholar 

  • Vahter M (1983) Metabolism of arsenic. In: Fowler BA (ed) Biological and environmental effects of arsenic. Elsevier Science, New York, pp 171–198

    Google Scholar 

  • Vahter M (2000) Genetic polymorphism in the biotransformation of inorganic arsenic and its role in toxicity. Toxicol Lett 112:209–217. doi:10.1016/S0378-4274(99)00271-4

    Article  Google Scholar 

  • Van Klaveren RJ, Hoet PH, Pype JL, Demedts M, Nemery B (1997) Increase in gamma-glutamyltransferase by glutathione depletion in rat type II pneumocytes. Free Radic Biol Med 22:525–534. doi:10.1016/S0891-5849(96)00375-9

    Article  Google Scholar 

  • Wang TC, Jan KY, Wang ASS, Gurr JR (2007) Trivalent arsenicals induce lipid peroxidation, protein carbonylation, and oxidative DNA damage in human urothelial cells. Mutat Res 615:75–86. doi:10.1016/j.mrfmmm.2006.10.003

    CAS  Google Scholar 

  • Wang JP, Maddalena R, Zheng B, Zai C, Liu F, Ng JC (2009) Arsenicosis status and urinary malondialdehyde (MDA) in people exposed to arsenic contaminated-coal in China. Environ Int 35:502–506. doi:10.1016/j.envint.2008.07.016

    Article  CAS  Google Scholar 

  • Wei M, Wanibuchi H, Morimura K, Iwai S, Yoshida K, Endo G, Nakae D, Fukushima S (2002) Carcinogenicity of dimethylarsinic acid in male F344 rats and genetic alterations in induced urinary bladder tumors. Carcinogenesis 23:1387–1397. doi:10.1093/carcin/23.8.1387

    Article  CAS  Google Scholar 

  • Wei C, Li W, Zhang C, Van Hulle M, Cornelis R, Zhang X (2003) Safety evaluation of organoarsenical species in edible Porphyra from the China Sea. J Agr Food Chem 51:5176–5182. doi:10.1021/jf026117j

    Article  CAS  Google Scholar 

  • WHO (2001) Arsenic and arsenic compounds. 2nd ed. Environmental Health Criteria 224. World Health Organization, Geneva

    Google Scholar 

  • Yamauchi H, Yamato N, Yamamura Y (1988) Metabolism and excretion of orally and intraperitoneally administered methylarsonic acid in the hamster. Bull Environ Contam Toxicol 40:280–286. doi:10.1007/BF01881052

    Article  CAS  Google Scholar 

  • Yang YD (1998) Simultaneous determination of creatine, uric acid, creatinine and hippuric acid in urine by high performance liquid chromatography. Biomed Chromatogr 12:47–49. doi:10.1002/(SICI)1099-0801(199803/04)12:2<47::AID-BMC717>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  • Yoshida K, Inoue Y, Kuroda K, Chen H, Wanibuchi H, Fukushima S, Endo G (1998) Urinary excretion of arsenic metabolites after long-term oral administration of various arsenic compounds to rats. J Toxicol Environ Health A 54:179–192. doi:10.1080/009841098158890

    Article  CAS  Google Scholar 

  • Zakharyan RA, Ayala-Fierro F, Cullen WR, Carter DM, Aposhian HV (1999) Enzymatic methylation of arsenic compounds. VII. Monomethylarsonous acid (MMAIII) is the substrate for MMA methyltransferase of rabbit liver and human hepatocytes. Toxicol Appl Pharmacol 158:9–15. doi:10.1006/taap.1999.8687

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the Korean Food and Drug Administration (Grant No. 08152-432; 2007–2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Duck Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, BS., Choi, SJ., Kim, DW. et al. Effects of Repeated Seafood Consumption on Urinary Excretion of Arsenic Species by Volunteers. Arch Environ Contam Toxicol 58, 222–229 (2010). https://doi.org/10.1007/s00244-009-9333-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-009-9333-8

Keywords

Navigation