Skip to main content

Advertisement

Log in

A Survey of Alkylphenols, Bisphenols, and Triclosan in Personal Care Products from China and the United States

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Exposure of humans to environmental phenolic compounds such as bisphenol A (BPA) and alkylphenols is a matter of concern, due to these compounds’ ubiquitous occurrence and estrogenic potencies. Little is known about the levels of environmental phenolics in personal care products (PCPs). In this study, nonylphenol, two octylphenols, eight bisphenols (BPA and its analogs), and triclosan (TCS) were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in PCP samples (n = 231) collected from China and the United States (U.S.). The concentrations of 4-n-nonylphenol (4-NP), 4-n-octylphenol (4-OP), 4-tert-octylphenol (4-t-OP), and TCS were in the ranges of <0.5–39,100 [geometric mean (GM): 21.5], <0.5–315 (0.680), <1.0–10,100 (2.69), and <0.5–53,900 (3.03) ng/g, respectively. The GM concentrations of individual bisphenols, including BPA, bisphenol S (BPS), and bisphenol F (BPF), were generally at sub-nanogram per gram levels. No significant differences in concentrations of the target compounds were found among various PCP categories or between China and the U.S. The estimated GM daily intakes of 4-NP, ∑OPs (sum of 4-OP and 4-t-OP), ∑BPs (sum of eight bisphenols), and TCS through dermal absorption from the use of PCPs were 0.932, 0.093, 0.072, and 0.016 μg/day, respectively, for adult Chinese women and 0.340, 0.054, 0.120, and 0.068 μg/day, respectively, for adult U.S. women. Body lotions, face creams, and liquid foundations accounted for the majority (>85 %) of the dermal exposure doses of the target phenolics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allmyr M, Adolfsson-Erici M, McLachlan M, Sandborgh-Englund G (2006) Triclosan in plasma and milk from Swedish nursing mothers and their exposure via personal care products. Sci Total Environ 372:87–93

    Article  CAS  Google Scholar 

  • Asimakopoulos AG, Thomaidis NS, Koupparis MA (2012) Recent trends in biomonitoring of bisphenol A, 4-t-octylphenol, and 4-nonylphenol. Toxicol Lett 210:141–154

    Article  CAS  Google Scholar 

  • Asimakopoulos AG, Thomaidis NS, Kannan K (2014) Widespread occurrence of bisphenol A diglycidyl ethers, p-hydroxybenzoic acid esters (parabens), benzophenone type-UV filters, triclosan, and triclocarban in human urine from Athens, Greece. Sci Total Environ 470–471:1243–1249

    Article  Google Scholar 

  • Baradie B, Shoichet MS (2005) Novel fluoro-terpolymers for coatings applications. Macromolecules 38(13):5560–5568

    Article  CAS  Google Scholar 

  • Bickers DR, Calow P, Greim HA, Hanifin JM, Rogers AE, Saurat JH et al (2003) The safety assessment of fragrance materials. Regul Toxicol Pharmacol 37(2):218–273

    Article  CAS  Google Scholar 

  • Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82(11):1518–1532

    Article  CAS  Google Scholar 

  • Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL (2008) Urinary concentrations of triclosan in the U.S. population: 2003–2004. Environ Health Perspect 116(3):303–307

    Article  CAS  Google Scholar 

  • Casals-Casas C, Desvergne B (2011) Endocrine disruptors: from endocrine to metabolic disruption. Annu Rev Physiol 73:135–162

    Article  CAS  Google Scholar 

  • Chen MY, Ike M, Fujita M (2002) Acute toxicity, mutagenicity, and estrogenicity of bisphenol-A and other bisphenols. Environ Toxicol 17(1):80–86

    Article  CAS  Google Scholar 

  • Clarke BO, Smith SR (2011) Review of ‘emerging’ organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environ Int 37(1):226–247

    Article  CAS  Google Scholar 

  • Dann AB, Hontela A (2011) Triclosan: environmental exposure, toxicity and mechanisms of action. J Appl Toxicol 31(4):285–311

    Article  CAS  Google Scholar 

  • David A, Fenet H, Gomez E (2009) Alkylphenols in marine environments: distribution monitoring strategies and detection considerations. Mar Pollut Bull 58:953–960

    Article  CAS  Google Scholar 

  • Dodson RE, Nishioka M, Standley LJ, Perovich LJ, Brody JG, Rudel RA (2012) Endocrine disruptors and asthma-associated chemicals in consumer products. Environ Health Perspect 120:935–943

    Article  CAS  Google Scholar 

  • European Commission (EC) (2000) Directive 2000/60/EC of the European Parliament and of the council establishing a framework for community action in the field of water policy. Off J Eur Commun L327:1–73

    Google Scholar 

  • Fromme H, Küchler T, Otto T, Pilz K, Müller J, Wenzel A (2002) Occurrence of phthalates and bisphenol A and F in the environment. Water Res 36(6):1429–1438

    Article  CAS  Google Scholar 

  • Gatidou G, Vassalou E, Thomaidis NS (2010) Bioconcentration of selected endocrine disrupting compounds in the Mediterranean mussel, Mytilus galloprovincialis. Mar Pollut Bull 60:2111–2116

    Article  CAS  Google Scholar 

  • Geens T, Aerts D, Berthot C, Bourguignon JP, Goeyens L, Lecomte P et al (2012) A review of dietary and nondietary exposure to bisphenol-A. Food Chem Toxicol 50(10):3725–3740

    Article  CAS  Google Scholar 

  • Grumetto L, Montesano D, Seccia S, Albrizio S, Barbato F (2008) Determination of bisphenol A and bisphenol B residues in canned peeled tomatoes by reversed-phase liquid chromatography. J Agric Food Chem 56:10633–10637

    Article  CAS  Google Scholar 

  • Hinther A, Bromba CM, Wulff JE, Helbing CC (2011) Effects of triclocarban, triclosan, and methyl triclosan on thyroid hormone action and stress in frog and mammalian culture systems. Environ Sci Technol 45(12):5395–5402

    Article  CAS  Google Scholar 

  • Ishibashi H, Matsumura N, Hirano M, Matsuoka M, Shiratsuchi H, Ishibashi Y et al (2004) Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquat Toxicol 67(2):167–179

    Article  CAS  Google Scholar 

  • Kitamura S, Suzuki T, Sanoh S, Kohta R, Jinno N, Sugihara K et al (2005) Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds. Toxicol Sci 84(2):249–259

    Article  CAS  Google Scholar 

  • Konno Y, Suzuki H, Kudo H, Kameyama A, Nishikubo T (2004) Synthesis and properties of fluorine-containing poly(ether)s with pendant hydroxyl groups by the polyaddition of bis(oxetane)s and bisphenol AF. Polym J 36(2):114–122

    Article  CAS  Google Scholar 

  • Lewis RC, Meeker JD, Peterson KE, Lee JM, Pace GG, Cantoral A et al (2013) Predictors of urinary bisphenol A and phthalate metabolite concentrations in Mexican children. Chemosphere 93(10):2390–2398

    Article  CAS  Google Scholar 

  • Liao C, Kannan K (2013) Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure. J Agric Food Chem 61(19):4655–4662

    Article  CAS  Google Scholar 

  • Liao C, Liu F, Alomirah H, Loi VD, Mohd MA, Moon HB et al (2012a) Bisphenol S in urine from the United States and seven Asian countries: occurrence and human exposures. Environ Sci Technol 46(12):6860–6866

    Article  CAS  Google Scholar 

  • Liao C, Liu F, Guo Y, Moon HB, Nakata H, Wu Q et al (2012b) Occurrence of eight bisphenol analogues in indoor dust from the United States and several Asian countries: implications for human exposure. Environ Sci Technol 46(16):9138–9145

    Article  CAS  Google Scholar 

  • Liao C, Liu F, Kannan K (2012c) Bisphenol S, a new bisphenol analogue, in paper products and currency bills and its association with bisphenol a residues. Environ Sci Technol 46(12):6515–6522

    Article  CAS  Google Scholar 

  • Loretz LJ, Api AM, Barraj LM, Burdick J, Dressler WE, Gettings SD (2005) Exposure data for cosmetic products: lipstick, body lotion, and face cream. Food Chem Toxicol 43(2):279–291

    Article  CAS  Google Scholar 

  • Loretz LJ, Api AM, Barraj LM, Burdick J, de Davis A, Dressler W et al (2006) Exposure data for personal care products: hairspray, spray perfume, liquid foundation, shampoo, body wash, and solid antiperspirant. Food Chem Toxicol 44(12):2008–2018

    Article  CAS  Google Scholar 

  • Loretz LJ, Api AM, Babcock L, Barraj LM, Burdick J, Cater KC et al (2008) Exposure data for cosmetic products: facial cleanser, hair conditioner, and eye shadow. Food Chem Toxicol 46(5):1516–1524

    Article  CAS  Google Scholar 

  • Renner R (1997) European bans on surfactant trigger transatlantic debate. Environ Sci Technol 31(7):316A–320A

    Article  CAS  Google Scholar 

  • Rodricks JV, Swenberg JA, Borzelleca JF, Maronpot RR, Shipp AM (2010) Triclosan: a critical review of the experimental data and development of margins of safety for consumer products. Crit Rev Toxicol 40(5):422–484

    Article  CAS  Google Scholar 

  • Schug TT, Janesick A, Blumberg B, Heindel JJ (2011) Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol 127(3–5):204–215

    Article  CAS  Google Scholar 

  • Sharma VK, Anquandah GA, Yngard RA, Kim H, Fekete J, Bouzek K et al (2009) Nonylphenol, octylphenol, and bisphenol-A in the aquatic environment: a review on occurrence, fate, and treatment. J Environ Sci Health A 44(5):423–442

    Article  CAS  Google Scholar 

  • Singer H, Müller S, Tixier C, Pillonel L (2002) Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ Sci Technol 36(23):4998–5004

    Article  CAS  Google Scholar 

  • Song S, Ruan T, Wang T, Liu R, Jiang G (2012) Distribution and preliminary exposure assessment of bisphenol AF (BPAF) in various environmental matrices around a manufacturing plant in China. Environ Sci Technol 46(24):13136–13143

    Article  CAS  Google Scholar 

  • Sonnenschein C, Soto AM (1998) An updated review of environmental estrogen and androgen mimics and antagonists. J Steroid Biochem Mol Biol 65(1–6):143–150

    Article  CAS  Google Scholar 

  • Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ, Schoenfelder G (2010) Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ Health Perspect 118(8):1055–1070

    Article  CAS  Google Scholar 

  • Viñas P, Campillo N, Martínez-Castillo N, Hernández-Córdoba M (2010) Comparison of two derivatization-based methods for solid-phase microextraction-gas chromatography-mass spectrometric determination of bisphenol A, bisphenol S and biphenol migrated from food cans. Anal Bioanal Chem 397(1):115–125

    Article  Google Scholar 

  • Wormuth M, Scheringer M, Hungerbuhler K (2005) Linking the use of scented consumer products to consumer exposure to polycyclic musk fragrances. J Ind Ecol 9:237–258

    Article  CAS  Google Scholar 

  • Ying GG, Williams B, Kookana R (2002) Environmental fate of alkylphenols and alkylphenol ethoxylates—a review. Environ Int 28(3):215–226

    Article  CAS  Google Scholar 

  • Zorrilla LM, Gibson EK, Jeffay SC, Crofton KM, Setzer WR, Cooper RL et al (2009) The effects of triclosan on puberty and thyroid hormones in male wistar rats. Toxicol Sci 107(1):56–64

    CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by a Grant (1U38EH000464-01) from the Centers for Disease Control and Prevention (CDC, Atlanta, GA, USA) to Wadsworth Center, New York State Department of Health. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the CDC. We thank Prof. Shushen Liu (Tongji University), and Drs. Kegang Zhang (Research Center for Eco-Environmental Sciences, CAS), Zhenhua Wang (Shandong Analysis and Test Center), and Zongyan Cui (Hebei Entry-Exit Inspection and Quarantine Bureau) for help with the collection of samples in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurunthachalam Kannan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 82 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, C., Kannan, K. A Survey of Alkylphenols, Bisphenols, and Triclosan in Personal Care Products from China and the United States. Arch Environ Contam Toxicol 67, 50–59 (2014). https://doi.org/10.1007/s00244-014-0016-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-014-0016-8

Keywords

Navigation