Skip to main content
Erschienen in: Pediatric Cardiology 7/2018

Open Access 09.05.2018 | Original Article

Catheter, MRI and CT Imaging in Newborns with Pulmonary Atresia with Ventricular Septal Defect and Aortopulmonary Collaterals: Quantifying the Risks of Radiation Dose and Anaesthetic Time

verfasst von: David F. A. Lloyd, Sebastian Goreczny, Conal Austin, Tarique Hussain, Shakeel A. Qureshi, Eric Rosenthal, Thomas Krasemann

Erschienen in: Pediatric Cardiology | Ausgabe 7/2018

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

A comprehensive understanding of the native pulmonary blood supply is crucial in newborns with pulmonary atresia with ventricular septal defect and aortopulmonary collaterals (PA/VSD/MAPCA). We sought to describe the accuracy in terms of identifying native pulmonary arteries, radiation dose and anaesthetic time associated with multi-modality imaging in these patients, prior to their first therapeutic intervention. Furthermore, we wanted to evaluate the cumulative radiations dose and anaesthetic time over the study period. Patients with PA/VSD/MAPCA diagnosed at < 100 days between 2004 and 2014 were identified. Cumulative radiation dose and anaesthetic times were calculated, with imaging results compared with intraoperative findings. We then calculated the cumulative risks to date for all surviving children. Of 19 eligible patients, 2 had echocardiography only prior to first intervention. The remaining 17 patients underwent 13 MRIs, 4 CT scans and 13 cardiac catheterization procedures. The mean radiation dose was 169 mGy cm2 (47–461 mGy cm2), and mean anaesthetic time was 111 min (33–185 min). 3 children had MRI only with no radiation exposure, and one child had CT only with no anaesthetic. Early cross-sectional imaging allowed for delayed catheterisation, but without significantly reducing radiation burden or anaesthetic time. The maximum cumulative radiation dose was 8022 mGy cm2 in a 6-year-old patient and 1263 min of anaesthetic at 5 years. There is the potential to generate very high radiation doses and anaesthetic times from diagnostic imaging alone in these patients. As survival continues to improve in many congenital heart defects, the important risks of serial diagnostic imaging must be considered when planning long-term management.

Introduction

Pulmonary atresia with ventricular septal defect represents a spectrum of congenital heart disease with significant anatomical heterogeneity. In patients where the pulmonary blood supply is provided by aortopulmonary collaterals(PA/VSD/MAPCA), accurate imaging is critical to long term planning and prognosis; in particular, the presence of absence of native pulmonary arteries [1, 2]. In view of this, multiple imaging modalities may be employed in the same patient even before any intervention is performed, all of which can carry important risks (Table 1) [39]. General anaesthesia, for example, almost universally required under 6 months of age, carries significant risks in patients with single ventricle physiology (such as pulmonary atresia) in this age group [1013]. The use of ionising radiation associated with CT and cardiac catheterisation also carries important long-term risks, with younger children 3 to 4 times more likely than adults to develop malignancies following radiation exposure [3, 1416]. Cardiac catheterisation alone accounts for by far the largest proportion of radiation exposure in children with congenital heart disease [3, 17, 18].
Table 1
Imaging modalities in patients with pulmonary atresia
Modality
Advantages
Disadvantages/risks
Echocardiography
Bedside test
Non-invasive
Poor visualisation of most extrapericardial structures
Cardiac catheterisation [4, 5, 8]
Can determine dual supply of lung segments
Direct pressure measurements
Accurate in identifying native pulmonary arteries
Invasive
Risk of vascular injury, stroke, death
General anaesthetic required
Radiation risk
CT Angiography [4, 6, 7]
Fast acquisition
Accurate for native pulmonary arteries, shunts and vessel sizes
Can image extracardiac structures
General anaesthetic likely to be required
Radiation risk
MRI Angiography [6, 8, 9]
Relatively accurate for pulmonary arteries and larger collaterals
Can calculate flow rates
Can image extracardiac structures
No radiation
General anaesthetic likely to be required
Less accurate than CT for sub-millimetre vessels
Slow acquisition time
Possible gadolinium deposition in the brain
The aim of this study was to quantify the radiation exposure and anaesthetic time associated solely with diagnostic imaging to identify native pulmonary arteries, if present, in newborns and infants with PA/VSD/MAPCA, prior to their first therapeutic intervention. We then calculated the cumulative risks to date for all surviving children.

Materials and Methods

The institutional database of the Department of Congenital Heart Disease (Heartsuite, Systeria, Glasgow, United Kingdom), at the Evelina London Children’s Hospital in London, United Kingdom, was interrogated to find all patients diagnosed with pulmonary atresia, ventricular septal defect and aortopulmonary collaterals under 100 days of age, between 2004 and 2014. The cumulative radiation doses and anaesthetic time of patients during the study period was calculated. Radiation doses are given in dose area product units (cGy cm2) [16], which are independent of the location of measurement and regarded as being suitable for describing radiation exposure in children [19].
In keeping with unit policy, decision making for these complex patients was not protocolised over this time period, and imaging strategies were determined on a case-by-case basis; hence, not every patient underwent all imaging modalities. We also evaluated the cumulative radiation dose and anaesthetic time for these patients over the whole study period.

Results

19 patients diagnosed with PA/VSD/MAPCA under the age of 100 days were identified. The first investigation was transthoracic echocardiography in all cases, of which 17 patients went on to have further imaging. In total, there were 13 MRI scans, 13 cardiac catheterisations and 4 CT scans performed in this group before therapeutic intervention. All were within the first 100 days of life, and aside from one patient with 2 MRI scans, no patient had the same investigation more than once. A full summary of the imaging strategy used in each patient is depicted in Table 2, including the accuracy of the imaging modalities in identifying the presence of native pulmonary arteries. Example imaging from a single patient is shown Figs. 1 and 2.
Table 2
Imaging strategy, additional findings and cumulative radiation dose and anaesthetic time prior to first intervention
 
Age (d)
PAs on echo?
Imaging 1
Age (d)
PAs?
Imaging 2
Age (d)
PAs?
Other findings
Imaging 3
Age (d)
PAs?
Other findings
PAs at Surgery?
GA (mins)
Rad (mGy cm2)
Surgery
1
0
Yes
Yes
0
0
Shunt to PAs
2
0
Yes
Cath
6
Yes
Yes
181
78
Shunt to PAs
3
1
No
MRI
5
No
MRI
79
No
+ 1 APC
Cath
86
No
None
No
90
141
Shunt to unif.
4
0
Yes
MRI
4
Yes
Yes
92
0
Shunt to PAs
5
0
Yes
MRI
5
Yes
Yes
33
0
Shunt to PAs
6
0
No
Cath
1
Yes
Yes
40
62
Shunt to PAs
7
0
Yes
MRI
2
Yes
Cath
16
Yes
None
Yes
114
231
Shunt to PAs
8
0
Yes
MRI
19
Yes
Cath
34
Yes
None
Yes
185
172
Shunt to PAs
9
0
Yes
Cath
2
Yes
Yes
108
122
Shunt to PAs
10
0
Yes
MRI
11
No
Cath
34
Yes
None
Yes
91
58
Shunt to PAs
11
94
Yes
MRI
96
No
No
52
0
Shunt to unif.
12
1
No
MRI
6
No
Cath
8
Yes
+ 1 APC
Yes
107
158
Shunt to PAs
13
73
Yes
MRI
76
Yes
Cath
80
Yes
+ 1 APC
Yes
118
47
Shunt to PAs
14
11
Yes
MRI
18
No
Cath
60
No
None
CT
85
Yes
None
No
157
461
Shunt to unif.
15
10
Yes
MRI
11
No
Cath
17
Yes
+ 1 APC
Yes
174
338
Stent to PDA
16
0
Yes
CT
1
Yes
Yes
0
66
Shunt to PAs
17
0
Yes
MRI
1
No
CT
7
No
+ 2 APCs
Cath
13
Yes
− 1 APC
Yes
130
191
Shunt to PAs
18
23
No
CT
24
No
Cath
25
Yes
PAs
Yes
108
238
Conduit to unif.
19
0
Yes
Yes
0
0
Shunt to PAs
PAs pulmonary arteries, GA general anaesthetic, Rad radiation dose, Cath catheterisation, MRI magnetic resonance imaging, APC aortopulmonary collaterals, Unif unifocalised collaterals, CT computed tomography, PDA patent arterial duct
The mean cumulative anaesthetic time for all forms of imaging was 111 min (median 108 min, range 33–185 min). One child who underwent CT only after echocardiographic evaluation did not have general anaesthetic. The mean radiation dose for the 13 patients undergoing diagnostic cardiac catheterisation was 119 mGy cm2 (median 122 mGy cm2, range 47–231 mGy cm2). In the four patients who underwent CT, the mean radiation dose was 92 mGy cm2 (median 90 mGy cm2, range 66–123 mGy cm2). The mean total radiation dose for the three patients undergoing both catheterisation and CT was 297 mGy cm2 (median 238 mGy cm2, range 191–461 mGy cm2). A total five patients (two with echo only and three echo and MRI only) had no radiation exposure prior to therapeutic intervention.
The average age of patients undergoing primary cardiac catheterisation was 3 days (median 2 days, range 1–6 days, n = 3). For patients undergoing primary CT or MRI, the mean age of any subsequent catheterisation (n = 10) was 35 days (median 21 days, range 8–86 days; p = 0.09). Having an MRI or CT prior to catheterisation did not significantly reduce the radiation dose or anaesthetic time of the cardiac catheterisation in our series.
Over the 10-year period of our study, many surviving patients underwent further imaging to assess the pulmonary vasculature. This comprised of non-invasive cross-sectional imaging as well as diagnostic and/or interventional cardiac catheterisation, most frequently to address circumferential stenosis in the reconstructed pulmonary arteries. Table 3 shows the cumulative number of investigations performed to date, including the total number of X-ray radiological studies, with total radiation dose and anaesthetic times for each patient.
Table 3
Lifetime imaging, cumulative radiation dose and anaesthetic time
N
Age at last follow up
N
Cath
Cath Rad (mGy cm2)
Cath GA (mins)
N
CT
CT Rad (mGy cm2)
N
MRI
MRI GA
(mins)
N
CXR
N
OXR
Total Rada (mGy cm2)
Total GA (mins)
1
11 years
0
0
0
0
0
2
172
18
34
0
172
2
8 years
3
2843
409
2
186
34
2843
595
3
d. 96 days
1
141
63
2
57
6
141
120
4
5 years
5
4327
811
1
34
4
452
30
6
4361
1263
5
d. 17 months
2
1156
170
2
96
26
1
1156
266
6
3 years
2
185
125
2
131
25
1
185
256
7
d. 32 days
1
231
100
1
14
16
2
231
114
8
2 years
1
172
98
2
147
15
172
245
9
6 years
5
8022
786
3
358
39
1
8022
1144
10
5 years
3
1357
245
3
199
45
12
1357
444
11
5 years
2
104
155
1
133
1
52
57
14
237
207
12
d. 18 months
2
1409
164
2
114
15
1
1409
278
13
4 years
1
47
56
2
134
23
47
190
14
d. 2 years
1
338
108
1
123
2
145
42
4
461
253
15
d. 30 days
1
804
110
1
64
12
804
174
16
16 months
2
349
237
2
404
1
28
26
3
753
265
17
9 months
1
84
119
1
107
1
11
20
7
191
130
18
10 months
1
165
108
2
303
42
4
468
108
19
d. 31 days
0
0
0
0
0
0
0
0
19
0
0
N number, Cath catheterisation, Rad radiation dose, CT computed tomography, MRI magnetic resonance imaging, GA general anaesthetic, CXR chest X-ray, OXR other X-ray, d. died
aNot including radiation from chest and other X-rays

Discussion

We have attempted to quantify the cumulative anaesthetic time and radiation exposure resulting from serial diagnostic investigations in patients with PA/VSD/MAPCA. The median radiation dose in our series prior to intervention was 122 mGy cm2, with one patient undergoing 157 min of general anaesthetic time and a total radiation dose of 461 mGy cm2 within the first 3 months of life, prior to any therapeutic intervention being performed. By way of comparison, the median radiation dose for 312 interventional catheter procedures in our institution—across all age groups—was 176 mGy cm2 from 2005 to 2009 [16]. We rarely perform pure diagnostic catheterisation in our institution, and hence could not compare to diagnostic catheterisations for other reasons.
As anticipated, despite carrying the highest risks, cardiac catheterisation appeared to be the “gold standard” investigation, correctly identifying the presence or absence of native pulmonary arteries in all patients. It was also most frequently the final investigation before committing to intervention. MRI and CT showed poorer sensitivity to identify native pulmonary arteries in our patients, and whilst the numbers were too small to allow for a comprehensive comparison, falling acquisition times and the use of CT and MRI imaging without anaesthesia continue to increase their attractiveness in a clinical setting [6, 20, 21]. CT in particular has shown promising results for infants with aortopulmonary collaterals [22], with the potential for a reduced radiation burden in modern systems [23]. The potential advantage of cross-sectional imaging providing an initial “roadmap” for subsequent catheterisation was, however, not clearly demonstrated in our series: the mean radiation dose when catheterisation was performed without prior CT/MRI was 87 mGy cm2 (median 78 mGy cm2, range 62–122 mGy cm2, n = 3), and 152 mGy cm2 (median 150 mGy cm2, 47–338 mGy cm2, n = 10) when cross-sectional imaging was available; the mean anaesthetic time was 110 min (median 108 min, range 40–181 min) versus 86 min (median 99 min, range 40–119 min), respectively (p = 0.38). In both MRI and CT settings, correct imaging of vessels is flow dependent, and in cardiac catheterisation usually injections of contrast is done with “power injections” per pump or by hand, hence providing adequate flow locally [24].
Repeated diagnostic and interventional procedures in patients with PA/VSD/MAPCA, in particular cardiac catheterisation, can lead to extremely high cumulative radiation doses in later childhood. Children are more susceptible than adults to the effects of ionising radiation and, as survival continues to improve, these patients will have a longer life-span over which that risk is expressed [16, 25]. One patient of our series has been exposed to a cumulative radiation dose of 8022 mGy/cm2 at the age of 6 years, from five catheterisation procedures. One could argue that such radiation dose moves the future malignancy risk from stochastic towards probable, even when taking into account anticipated life expectancy [25].

Limitations

This is a single centre, retrospective, descriptive study. During the study period, no protocol regarding imaging to identify native pulmonary arteries existed in our institution, and different imaging modalities were applied on a case-to-case basis.

Conclusion

Whilst optimisation of the pulmonary circulation is crucial in patients with PA/VSD/MAPCA, there is the potential to generate very high radiation doses and anaesthetic times from diagnostic imaging alone. As survival continues to improve in patients with a range of complex congenital heart defects, the important risks of serial diagnostic imaging must be considered alongside long-term interventional strategies.

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.
The institutional audit board waived the need for informed consent for this retrospective data analysis.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Pädiatrie

Kombi-Abonnement

Mit e.Med Pädiatrie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Pädiatrie, den Premium-Inhalten der pädiatrischen Fachzeitschriften, inklusive einer gedruckten Pädiatrie-Zeitschrift Ihrer Wahl.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Griselli M, McGuirk SP, Winlaw DS et al (2004) The influence of pulmonary artery morphology on the results of operations for major aortopulmonary collateral arteries and complex congenital heart defects. J Thorac Cardiovasc Surg 127:251–258CrossRef Griselli M, McGuirk SP, Winlaw DS et al (2004) The influence of pulmonary artery morphology on the results of operations for major aortopulmonary collateral arteries and complex congenital heart defects. J Thorac Cardiovasc Surg 127:251–258CrossRef
2.
Zurück zum Zitat Metras D, Chetaille P, Kreitmann B, Fraisse A, Ghez O, Riberi A (2001) Pulmonary atresia with ventricular septal defect, extremely hypoplastic pulmonary arteries, major aorto-pulmonary collaterals. Eur J Cardiothorac Surg 20:590–596CrossRef Metras D, Chetaille P, Kreitmann B, Fraisse A, Ghez O, Riberi A (2001) Pulmonary atresia with ventricular septal defect, extremely hypoplastic pulmonary arteries, major aorto-pulmonary collaterals. Eur J Cardiothorac Surg 20:590–596CrossRef
3.
Zurück zum Zitat Johnson JN, Hornik CP, Li JS, Benjamin DK Jr et al (2014) Cumulative radiation exposure and cancer risk estimation in children with heart disease. Circulation 130:161–167CrossRef Johnson JN, Hornik CP, Li JS, Benjamin DK Jr et al (2014) Cumulative radiation exposure and cancer risk estimation in children with heart disease. Circulation 130:161–167CrossRef
4.
Zurück zum Zitat Greil GF, Schoebinger M, Kuettner A et al (2006) Imaging of aortopulmonary collateral arteries with high-resolution multidetector CT. Pediatr Radiol 36:502–509CrossRef Greil GF, Schoebinger M, Kuettner A et al (2006) Imaging of aortopulmonary collateral arteries with high-resolution multidetector CT. Pediatr Radiol 36:502–509CrossRef
5.
Zurück zum Zitat Ley S, Zaporozhan J, Arnold R et al (2006) Preoperative assessment and follow-up of congenital abnormalities of the pulmonary arteries using CT and MRI. Eur Radiol 17:151–162CrossRef Ley S, Zaporozhan J, Arnold R et al (2006) Preoperative assessment and follow-up of congenital abnormalities of the pulmonary arteries using CT and MRI. Eur Radiol 17:151–162CrossRef
6.
Zurück zum Zitat Taylor AM (2008) Cardiac imaging: MR or CT? Which to use when. Pediatr Radiol 38:433–438CrossRef Taylor AM (2008) Cardiac imaging: MR or CT? Which to use when. Pediatr Radiol 38:433–438CrossRef
7.
Zurück zum Zitat Hollingsworth CL, Yoshizumi TT, Frush DP et al (2012) Pediatric cardiac-gated CT angiography: assessment of radiation dose. Am J Roentgenol 189:12–18CrossRef Hollingsworth CL, Yoshizumi TT, Frush DP et al (2012) Pediatric cardiac-gated CT angiography: assessment of radiation dose. Am J Roentgenol 189:12–18CrossRef
8.
Zurück zum Zitat Romeih S, Al-Sheshtawy F, Salama M et al (2012) Comparison of contrast enhanced magnetic resonance angiography with invasive cardiac catheterisation for evaluation of children with pulmonary atresia. Heart Int 7:e9CrossRef Romeih S, Al-Sheshtawy F, Salama M et al (2012) Comparison of contrast enhanced magnetic resonance angiography with invasive cardiac catheterisation for evaluation of children with pulmonary atresia. Heart Int 7:e9CrossRef
9.
Zurück zum Zitat Rao UV, Vanajakshamma V, Rajasekhar D, Lakshmi AY, Reddy RN (2013) Magnetic resonance angiography vs. angiography in tetralogy of Fallot. Asian Cardiovasc Thorac Ann 21:418–425CrossRef Rao UV, Vanajakshamma V, Rajasekhar D, Lakshmi AY, Reddy RN (2013) Magnetic resonance angiography vs. angiography in tetralogy of Fallot. Asian Cardiovasc Thorac Ann 21:418–425CrossRef
10.
Zurück zum Zitat Sümpelmann R, Osthaus WA (2007) The pediatric cardiac patient presenting for noncardiac surgery. Curr Opin Anaesthesiol 20:216–220CrossRef Sümpelmann R, Osthaus WA (2007) The pediatric cardiac patient presenting for noncardiac surgery. Curr Opin Anaesthesiol 20:216–220CrossRef
11.
Zurück zum Zitat Gottlieb EA, Andropoulos DB (2013) Anesthesia for the patient with congenital heart disease presenting for noncardiac surgery. Curr Opin Anaesthesiol 26:318–326CrossRef Gottlieb EA, Andropoulos DB (2013) Anesthesia for the patient with congenital heart disease presenting for noncardiac surgery. Curr Opin Anaesthesiol 26:318–326CrossRef
12.
Zurück zum Zitat Odegard KC, DiNardo JA, Kussman BD et al (2007) The frequency of anesthesia-related cardiac arrests in patients with congenital heart disease undergoing cardiac surgery. Anesth Analg 105:335CrossRef Odegard KC, DiNardo JA, Kussman BD et al (2007) The frequency of anesthesia-related cardiac arrests in patients with congenital heart disease undergoing cardiac surgery. Anesth Analg 105:335CrossRef
13.
Zurück zum Zitat Ramamoorthy C, Haberkern CM, Bhananker SM et al (2010) Anesthesia-related cardiac arrest in children with heart disease: data from the pediatric perioperative cardiac arrest (POCA) registry. Anesth Analg 110:1376–1382CrossRef Ramamoorthy C, Haberkern CM, Bhananker SM et al (2010) Anesthesia-related cardiac arrest in children with heart disease: data from the pediatric perioperative cardiac arrest (POCA) registry. Anesth Analg 110:1376–1382CrossRef
14.
Zurück zum Zitat Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, Nuclear and Radiation Studies Board, Division on Earth and Life Studies, National Research Council of the National Academies (2006) Health risks from exposure to low levels of ionizing radiation BEIR VII phase. The National Academies Press, Washington, DC Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, Nuclear and Radiation Studies Board, Division on Earth and Life Studies, National Research Council of the National Academies (2006) Health risks from exposure to low levels of ionizing radiation BEIR VII phase. The National Academies Press, Washington, DC
15.
Zurück zum Zitat Miglioretti DL, Johnson E, Williams A et al (2013) The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 167:700–707CrossRef Miglioretti DL, Johnson E, Williams A et al (2013) The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 167:700–707CrossRef
16.
Zurück zum Zitat Smith BG, Tibby SM, Qureshi SA, Rosenthal E, Krasemann T (2012) Quantification of temporal, procedural, and hardware-related factors influencing radiation exposure during pediatric cardiac catheterisation. Catheter Cardiovasc Interv 80:931–936CrossRef Smith BG, Tibby SM, Qureshi SA, Rosenthal E, Krasemann T (2012) Quantification of temporal, procedural, and hardware-related factors influencing radiation exposure during pediatric cardiac catheterisation. Catheter Cardiovasc Interv 80:931–936CrossRef
17.
Zurück zum Zitat Downing TE, McDonnell A, Zhu X et al (2014) Cumulative medical radiation exposure throughout staged palliation of single ventricle congenital heart disease. Pediatr Cardiol 36:190–195CrossRef Downing TE, McDonnell A, Zhu X et al (2014) Cumulative medical radiation exposure throughout staged palliation of single ventricle congenital heart disease. Pediatr Cardiol 36:190–195CrossRef
18.
Zurück zum Zitat Chan FP, Hanneman K (2015) Computed tomography and magnetic resonance imaging in neonates with congenital cardiovascular disease. In: Proceedings of seminars in ultrasound CT MRI, vol 36(2), pp 146–160CrossRef Chan FP, Hanneman K (2015) Computed tomography and magnetic resonance imaging in neonates with congenital cardiovascular disease. In: Proceedings of seminars in ultrasound CT MRI, vol 36(2), pp 146–160CrossRef
19.
Zurück zum Zitat Boothroyd A, McDonald E, Moores BM, Sluming V, Carty H (1997) Radiation exposure to children during cardiac catheterisation. Br J Radiol 70:180–185CrossRef Boothroyd A, McDonald E, Moores BM, Sluming V, Carty H (1997) Radiation exposure to children during cardiac catheterisation. Br J Radiol 70:180–185CrossRef
20.
Zurück zum Zitat Fogel MA, Weinberg PM, Parave E et al (2008) Deep sedation for cardiac magnetic resonance imaging: a comparison with cardiac anesthesia. J Pediatr 152:534–539CrossRef Fogel MA, Weinberg PM, Parave E et al (2008) Deep sedation for cardiac magnetic resonance imaging: a comparison with cardiac anesthesia. J Pediatr 152:534–539CrossRef
21.
Zurück zum Zitat Edwards AD, Arthurs OJ (2011) Paediatric MRI under sedation: is it necessary? What is the evidence for the alternatives? Pediatr Radiol 41:1353–1364CrossRef Edwards AD, Arthurs OJ (2011) Paediatric MRI under sedation: is it necessary? What is the evidence for the alternatives? Pediatr Radiol 41:1353–1364CrossRef
22.
Zurück zum Zitat Meinel FG, Huda W, Schoepf UJ et al (2013) Diagnostic accuracy of CT angiography in infants with tetralogy of fallot with pulmonary atresia and major aortopulmonary collateral arteries. J Cardiovasc Comput Tomogr 7:367–375CrossRef Meinel FG, Huda W, Schoepf UJ et al (2013) Diagnostic accuracy of CT angiography in infants with tetralogy of fallot with pulmonary atresia and major aortopulmonary collateral arteries. J Cardiovasc Comput Tomogr 7:367–375CrossRef
23.
Zurück zum Zitat Hou QR, Gao W, Sun AM et al (2017) A prospective evaluation of contrast and radiation dose and image quality in cardiac CT in children with complex congenital heart disease using low-concentration iodinated contrast agent and low tube voltage and current. Br J Radiol 90:20160669CrossRef Hou QR, Gao W, Sun AM et al (2017) A prospective evaluation of contrast and radiation dose and image quality in cardiac CT in children with complex congenital heart disease using low-concentration iodinated contrast agent and low tube voltage and current. Br J Radiol 90:20160669CrossRef
24.
Zurück zum Zitat Valverde I, Parish V, Hussain T et al (2011) Planning of catheter interventions for pulmonary artery stenosis: improved measurement agreement with magnetic resonance angiography using identical angulations. Catheter Cardiovasc Interv 77(3):400–408CrossRef Valverde I, Parish V, Hussain T et al (2011) Planning of catheter interventions for pulmonary artery stenosis: improved measurement agreement with magnetic resonance angiography using identical angulations. Catheter Cardiovasc Interv 77(3):400–408CrossRef
25.
Zurück zum Zitat Harbron R, Chapple C-L, O’Sullivan JJ, Best KE, Berrington de González A, Pearce MS (2017) Survival adjusted cancer risks attributable to radiation exposure from cardiac catheterisations in children. Heart 103:341–346CrossRef Harbron R, Chapple C-L, O’Sullivan JJ, Best KE, Berrington de González A, Pearce MS (2017) Survival adjusted cancer risks attributable to radiation exposure from cardiac catheterisations in children. Heart 103:341–346CrossRef
Metadaten
Titel
Catheter, MRI and CT Imaging in Newborns with Pulmonary Atresia with Ventricular Septal Defect and Aortopulmonary Collaterals: Quantifying the Risks of Radiation Dose and Anaesthetic Time
verfasst von
David F. A. Lloyd
Sebastian Goreczny
Conal Austin
Tarique Hussain
Shakeel A. Qureshi
Eric Rosenthal
Thomas Krasemann
Publikationsdatum
09.05.2018
Verlag
Springer US
Erschienen in
Pediatric Cardiology / Ausgabe 7/2018
Print ISSN: 0172-0643
Elektronische ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-018-1895-7

Weitere Artikel der Ausgabe 7/2018

Pediatric Cardiology 7/2018 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.