Skip to main content
Erschienen in: Pediatric Radiology 2/2011

01.09.2011 | ALARA-CT

Advances in CT technology and application to pediatric imaging

verfasst von: Mahadevappa Mahesh

Erschienen in: Pediatric Radiology | Sonderheft 2/2011

Einloggen, um Zugang zu erhalten

Abstract

The use of imaging in both hospital and non-hospital settings has expanded to more than 70 million CT procedures in the United States per year, with nearly 10% of procedures performed on children. The availability of multiple-row detector CT (MDCT) systems has played a large part in the wider usage of CT. This rapid increase in CT utilization combined with an increasing concern with regard to radiation exposure and associated risk demands the need for optimization of MDCT protocols. This manuscript will briefly discuss how technology has changed in regard to MDCT protocols, helping to reduce radiation dose in CT, especially in pediatric imaging.
Literatur
1.
Zurück zum Zitat NCRP (2009) National Council on Radiation Protection and Measurements. Ionizing radiation exposure of the population of the United States, NCRP Report No. 160 (National Council on Radiation Protection and Measurements, Bethesda, MD, USA NCRP (2009) National Council on Radiation Protection and Measurements. Ionizing radiation exposure of the population of the United States, NCRP Report No. 160 (National Council on Radiation Protection and Measurements, Bethesda, MD, USA
2.
Zurück zum Zitat Berrington de Gonzalez A, Mahesh M, Kim KP et al (2009) Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 169(22):2071–2077PubMedCrossRef Berrington de Gonzalez A, Mahesh M, Kim KP et al (2009) Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 169(22):2071–2077PubMedCrossRef
3.
Zurück zum Zitat Smith-Bindman R, Lipson J, Marcus R et al (2009) Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med 169:2078–2086PubMedCrossRef Smith-Bindman R, Lipson J, Marcus R et al (2009) Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med 169:2078–2086PubMedCrossRef
4.
Zurück zum Zitat Mahesh M (2009) MDCT physics: the basics—technology, image quality and radiation dose. Lippincott Williams & Wilkins, Philadelphia Mahesh M (2009) MDCT physics: the basics—technology, image quality and radiation dose. Lippincott Williams & Wilkins, Philadelphia
5.
Zurück zum Zitat NAS/NRC (National Academy of Sciences/National Research Council) (2006) Health risks from exposure to low levels of ionizing radiation, BEIR VII, Phase 2. National Academy Press, Washington NAS/NRC (National Academy of Sciences/National Research Council) (2006) Health risks from exposure to low levels of ionizing radiation, BEIR VII, Phase 2. National Academy Press, Washington
6.
Zurück zum Zitat Mettler FA Jr, Huda W, Yoshizumi TT et al (2008) Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 248(1):254–263PubMedCrossRef Mettler FA Jr, Huda W, Yoshizumi TT et al (2008) Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 248(1):254–263PubMedCrossRef
7.
Zurück zum Zitat Thomas KE, Wang B (2008) Age-specific effective doses for pediatric MSCT examinations at a large children’s hospital using DLP conversion coefficients: a simple estimation method. Pediatr Radiol 38:645–656PubMedCrossRef Thomas KE, Wang B (2008) Age-specific effective doses for pediatric MSCT examinations at a large children’s hospital using DLP conversion coefficients: a simple estimation method. Pediatr Radiol 38:645–656PubMedCrossRef
8.
Zurück zum Zitat Tubiana M, Feinendegen LE, Yang C et al (2009) The linear no-threshold relationship is inconsistent with radiation biologic and experimental data. Radiology 251:13–22PubMedCrossRef Tubiana M, Feinendegen LE, Yang C et al (2009) The linear no-threshold relationship is inconsistent with radiation biologic and experimental data. Radiology 251:13–22PubMedCrossRef
9.
Zurück zum Zitat Little MP, Wakeford R, Tawn EJ et al (2009) Risks associated with low doses and low dose rates of ionizing radiation: why linearity may be (almost) the best we can do. Radiology 251:6–12PubMedCrossRef Little MP, Wakeford R, Tawn EJ et al (2009) Risks associated with low doses and low dose rates of ionizing radiation: why linearity may be (almost) the best we can do. Radiology 251:6–12PubMedCrossRef
10.
Zurück zum Zitat McCollough CH, Bruesewitz MR, Kofler JM Jr (2006) CT dose reduction and dose management tools: overview of available options. Radiographics 26:503–512PubMedCrossRef McCollough CH, Bruesewitz MR, Kofler JM Jr (2006) CT dose reduction and dose management tools: overview of available options. Radiographics 26:503–512PubMedCrossRef
11.
Zurück zum Zitat Kalra MK, Maher MM, Toth TL et al (2004) Techniques and applications of automatic tube current modulation for CT. Radiology 233:649–657PubMedCrossRef Kalra MK, Maher MM, Toth TL et al (2004) Techniques and applications of automatic tube current modulation for CT. Radiology 233:649–657PubMedCrossRef
12.
Zurück zum Zitat Singh S, Kalra MK, Moore MA et al (2009) Dose reduction and compliance with pediatric CT protocols adapted to patient size, clinical indication, and number of prior studies. Radiology 252:200–208PubMedCrossRef Singh S, Kalra MK, Moore MA et al (2009) Dose reduction and compliance with pediatric CT protocols adapted to patient size, clinical indication, and number of prior studies. Radiology 252:200–208PubMedCrossRef
13.
Zurück zum Zitat Mahesh M (2009) Slice wars vs. dose wars in multiple-row detector CT. J Am Coll Radiol 6(3):201–202PubMedCrossRef Mahesh M (2009) Slice wars vs. dose wars in multiple-row detector CT. J Am Coll Radiol 6(3):201–202PubMedCrossRef
14.
Zurück zum Zitat Kroft LJM, Roelofs JJH, Geleijns J (2010) Scan time and patient dose for thoracic imaging in neonates and small children using axial volumetric 320-detector row CT compared to helical 64-, 32-, and 16-detector row CT acquisition. Pediatr Radiol 40:294–300PubMedCrossRef Kroft LJM, Roelofs JJH, Geleijns J (2010) Scan time and patient dose for thoracic imaging in neonates and small children using axial volumetric 320-detector row CT compared to helical 64-, 32-, and 16-detector row CT acquisition. Pediatr Radiol 40:294–300PubMedCrossRef
15.
Zurück zum Zitat Achenbach S, Marwan M, Schepis T et al (2009) High-pitch spiral acquisition: a new scan mode for coronary CT angiography. JACC Cardiovasc Imaging 3:117–121 Achenbach S, Marwan M, Schepis T et al (2009) High-pitch spiral acquisition: a new scan mode for coronary CT angiography. JACC Cardiovasc Imaging 3:117–121
16.
Zurück zum Zitat Molen VD, Geleijns J (2007) Overranging in multisection CT: quantification and relative contribution to dose-comparison of four 16-section scanners. Radiology 241(1):208–216 Molen VD, Geleijns J (2007) Overranging in multisection CT: quantification and relative contribution to dose-comparison of four 16-section scanners. Radiology 241(1):208–216
17.
Zurück zum Zitat Deak PD, Langner O, Lell M et al (2009) Effects of adaptive section collimation on patient radiation dose in multisection spiral CT. Radiology 252(1):140–147PubMedCrossRef Deak PD, Langner O, Lell M et al (2009) Effects of adaptive section collimation on patient radiation dose in multisection spiral CT. Radiology 252(1):140–147PubMedCrossRef
18.
Zurück zum Zitat Marin D, Nelson RC, Schindera ST et al (2010) Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm—initial clinical experience. Radiology 254:145–153PubMedCrossRef Marin D, Nelson RC, Schindera ST et al (2010) Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm—initial clinical experience. Radiology 254:145–153PubMedCrossRef
23.
Zurück zum Zitat Strauss KJ, Goske MJ, Kaste SC et al (2010) Image gently: ten steps you can take to optimize image quality and lower CT dose for pediatric patients. AJR 194:868–873PubMedCrossRef Strauss KJ, Goske MJ, Kaste SC et al (2010) Image gently: ten steps you can take to optimize image quality and lower CT dose for pediatric patients. AJR 194:868–873PubMedCrossRef
Metadaten
Titel
Advances in CT technology and application to pediatric imaging
verfasst von
Mahadevappa Mahesh
Publikationsdatum
01.09.2011
Verlag
Springer-Verlag
Erschienen in
Pediatric Radiology / Ausgabe Sonderheft 2/2011
Print ISSN: 0301-0449
Elektronische ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-011-2169-1

Weitere Artikel der Sonderheft 2/2011

Pediatric Radiology 2/2011 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.