Skip to main content
Erschienen in: Pediatric Radiology 9/2018

01.08.2018 | Pediatric Body MRI

Fast, free-breathing and motion-minimized techniques for pediatric body magnetic resonance imaging

verfasst von: Camilo Jaimes, John E. Kirsch, Michael S. Gee

Erschienen in: Pediatric Radiology | Ausgabe 9/2018

Einloggen, um Zugang zu erhalten

Abstract

Magnetic resonance imaging (MRI) is the preferred imaging modality in children with complex medical issues. Patient motion and respiration remain major challenges in pediatric abdominal MRI. Young children ages 3 months to 6 years are unable to cooperate or perform breath-holding and frequently require deep sedation or general anesthesia to undergo MRI. Given the growing concerns associated with the use of sedation and anesthesia as well as the adverse impact on workflow, developing and implementing fast and motion-resistant MRI sequences are of great interest. Fast sequences such as single-shot fast spin echo and balanced steady-state free precession are useful as quick anatomical surveys on routine abdominal MRI. The widespread utilization of parallel imaging and sequences with radial k-space sampling has contributed to decreasing scan time and improving image quality, respectively. Newer strategies including compressed sensing, simultaneous multi-slice acquisition, and hybrid approaches hold the prospect of faster image acquisition that could significantly reduce the need for sedation in this vulnerable population and decrease the time of anesthesia in cases where it is indicated.
Literatur
1.
Zurück zum Zitat Darge K, Anupindi SA, Jaramillo D (2011) MR imaging of the abdomen and pelvis in infants, children, and adolescents. Radiology 261:12–29CrossRefPubMed Darge K, Anupindi SA, Jaramillo D (2011) MR imaging of the abdomen and pelvis in infants, children, and adolescents. Radiology 261:12–29CrossRefPubMed
2.
Zurück zum Zitat Laor T, Jaramillo D (2009) MR imaging insights into skeletal maturation: what is normal? Radiology 250:28–38CrossRefPubMed Laor T, Jaramillo D (2009) MR imaging insights into skeletal maturation: what is normal? Radiology 250:28–38CrossRefPubMed
3.
Zurück zum Zitat Heller BJ, Yudkowitz FS, Lipson S (2017) Can we reduce anesthesia exposure? Neonatal brain MRI: swaddling vs. sedation, a national survey. J Clin Anesth 38:119–122CrossRefPubMed Heller BJ, Yudkowitz FS, Lipson S (2017) Can we reduce anesthesia exposure? Neonatal brain MRI: swaddling vs. sedation, a national survey. J Clin Anesth 38:119–122CrossRefPubMed
4.
Zurück zum Zitat Jaimes C, Gee MS (2016) Strategies to minimize sedation in pediatric body magnetic resonance imaging. Pediatr Radiol 46:916–927CrossRefPubMed Jaimes C, Gee MS (2016) Strategies to minimize sedation in pediatric body magnetic resonance imaging. Pediatr Radiol 46:916–927CrossRefPubMed
5.
Zurück zum Zitat Slovis TL (2011) Sedation and anesthesia issues in pediatric imaging. Pediatr Radiol 41:514–516CrossRefPubMed Slovis TL (2011) Sedation and anesthesia issues in pediatric imaging. Pediatr Radiol 41:514–516CrossRefPubMed
6.
Zurück zum Zitat Wilder RT, Flick RP, Sprung J et al (2009) Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 110:796–804CrossRefPubMedPubMedCentral Wilder RT, Flick RP, Sprung J et al (2009) Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 110:796–804CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Vanderby SA, Babyn PS, Carter MW et al (2010) Effect of anesthesia and sedation on pediatric MR imaging patient flow. Radiology 256:229–237CrossRefPubMed Vanderby SA, Babyn PS, Carter MW et al (2010) Effect of anesthesia and sedation on pediatric MR imaging patient flow. Radiology 256:229–237CrossRefPubMed
8.
Zurück zum Zitat Jaimes C, Murcia DJ, Miguel K et al (2018) Identification of quality improvement areas in pediatric MRI from analysis of patient safety reports. Pediatr Radiol 48:66–73CrossRefPubMed Jaimes C, Murcia DJ, Miguel K et al (2018) Identification of quality improvement areas in pediatric MRI from analysis of patient safety reports. Pediatr Radiol 48:66–73CrossRefPubMed
9.
Zurück zum Zitat Creeley CE, Dikranian KT, Dissen GA et al (2014) Isoflurane-induced apoptosis of neurons and oligodendrocytes in the fetal rhesus macaque brain. Anesthesiology 120:626–638CrossRefPubMedPubMedCentral Creeley CE, Dikranian KT, Dissen GA et al (2014) Isoflurane-induced apoptosis of neurons and oligodendrocytes in the fetal rhesus macaque brain. Anesthesiology 120:626–638CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Creeley C, Dikranian K, Dissen G et al (2013) Propofol-induced apoptosis of neurones and oligodendrocytes in fetal and neonatal rhesus macaque brain. Br J Anaesth 110:i29–i38CrossRefPubMedPubMedCentral Creeley C, Dikranian K, Dissen G et al (2013) Propofol-induced apoptosis of neurones and oligodendrocytes in fetal and neonatal rhesus macaque brain. Br J Anaesth 110:i29–i38CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Brambrink AM, Evers AS, Avidan MS et al (2012) Ketamine-induced neuroapoptosis in the fetal and neonatal rhesus macaque brain. Anesthesiology 116:372–384CrossRefPubMedPubMedCentral Brambrink AM, Evers AS, Avidan MS et al (2012) Ketamine-induced neuroapoptosis in the fetal and neonatal rhesus macaque brain. Anesthesiology 116:372–384CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Flick RP, Katusic SK, Colligan RC et al (2011) Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics 128:e1053–e1061CrossRefPubMedPubMedCentral Flick RP, Katusic SK, Colligan RC et al (2011) Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics 128:e1053–e1061CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 3:823–833CrossRefPubMed Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 3:823–833CrossRefPubMed
14.
Zurück zum Zitat Patel MR, Klufas RA, Alberico RA, Edelman RR (1997) Half-fourier acquisition single-shot turbo spin-echo (HASTE) MR: comparison with fast spin-echo MR in diseases of the brain. AJNR Am J Neuroradiol 18:1635–1640PubMed Patel MR, Klufas RA, Alberico RA, Edelman RR (1997) Half-fourier acquisition single-shot turbo spin-echo (HASTE) MR: comparison with fast spin-echo MR in diseases of the brain. AJNR Am J Neuroradiol 18:1635–1640PubMed
15.
Zurück zum Zitat Jung BA, Weigel M (2013) Spin echo magnetic resonance imaging. J Magn Reson Imaging 37:805–817CrossRefPubMed Jung BA, Weigel M (2013) Spin echo magnetic resonance imaging. J Magn Reson Imaging 37:805–817CrossRefPubMed
17.
Zurück zum Zitat Ream JM, Rosenkrantz AB (2015) Advances in T1-weighted and T2-weighted imaging in the abdomen and pelvis. Radiol Clin N Am 53:583–598CrossRefPubMed Ream JM, Rosenkrantz AB (2015) Advances in T1-weighted and T2-weighted imaging in the abdomen and pelvis. Radiol Clin N Am 53:583–598CrossRefPubMed
18.
Zurück zum Zitat Ruangwattanapaisarn N, Loening AM, Saranathan M et al (2015) Faster pediatric 3-T abdominal magnetic resonance imaging: comparison between conventional and variable refocusing flip-angle single-shot fast spin-echo sequences. Pediatr Radiol 45:847–854CrossRefPubMed Ruangwattanapaisarn N, Loening AM, Saranathan M et al (2015) Faster pediatric 3-T abdominal magnetic resonance imaging: comparison between conventional and variable refocusing flip-angle single-shot fast spin-echo sequences. Pediatr Radiol 45:847–854CrossRefPubMed
20.
Zurück zum Zitat Wakamiya M, Furukawa A, Kanasaki S, Murata K (2011) Assessment of small bowel motility function with cine-MRI using balanced steady-state free precession sequence. J Magn Reson Imaging 33:1235–1240CrossRefPubMed Wakamiya M, Furukawa A, Kanasaki S, Murata K (2011) Assessment of small bowel motility function with cine-MRI using balanced steady-state free precession sequence. J Magn Reson Imaging 33:1235–1240CrossRefPubMed
22.
Zurück zum Zitat Kim BS, Angthong W, Jeon YH, Semelka RC (2014) Body MR imaging: fast, efficient, and comprehensive. Radiol Clin North Am 52:623–636CrossRefPubMed Kim BS, Angthong W, Jeon YH, Semelka RC (2014) Body MR imaging: fast, efficient, and comprehensive. Radiol Clin North Am 52:623–636CrossRefPubMed
23.
Zurück zum Zitat Chavhan GB, Babyn PS, Vasanawala SS (2013) Abdominal MR imaging in children: motion compensation, sequence optimization, and protocol organization. Radiographics 33:703–719CrossRefPubMed Chavhan GB, Babyn PS, Vasanawala SS (2013) Abdominal MR imaging in children: motion compensation, sequence optimization, and protocol organization. Radiographics 33:703–719CrossRefPubMed
24.
Zurück zum Zitat Khrichenko D, Darge K (2010) Functional analysis in MR urography — made simple. Pediatr Radiol 40:182–199CrossRefPubMed Khrichenko D, Darge K (2010) Functional analysis in MR urography — made simple. Pediatr Radiol 40:182–199CrossRefPubMed
25.
Zurück zum Zitat Bedoya MA, Jaimes C, Khrichenko D et al (2014) Dynamic gadolinium-enhanced MRI of the proximal femur: preliminary experience in healthy children. AJR Am J Roentgenol 203:W440–W446CrossRefPubMed Bedoya MA, Jaimes C, Khrichenko D et al (2014) Dynamic gadolinium-enhanced MRI of the proximal femur: preliminary experience in healthy children. AJR Am J Roentgenol 203:W440–W446CrossRefPubMed
26.
Zurück zum Zitat Chandarana H, Block KT, Winfeld MJ et al (2014) Free-breathing contrast-enhanced T1-weighted gradient-echo imaging with radial k-space sampling for paediatric abdominopelvic MRI. Eur Radiol 24:320–326CrossRefPubMed Chandarana H, Block KT, Winfeld MJ et al (2014) Free-breathing contrast-enhanced T1-weighted gradient-echo imaging with radial k-space sampling for paediatric abdominopelvic MRI. Eur Radiol 24:320–326CrossRefPubMed
27.
Zurück zum Zitat Azevedo RM, de Campos RO, Ramalho M et al (2011) Free-breathing 3D T1-weighted gradient-echo sequence with radial data sampling in abdominal MRI: preliminary observations. AJR Am J Roentgenol 197:650–657CrossRefPubMed Azevedo RM, de Campos RO, Ramalho M et al (2011) Free-breathing 3D T1-weighted gradient-echo sequence with radial data sampling in abdominal MRI: preliminary observations. AJR Am J Roentgenol 197:650–657CrossRefPubMed
28.
29.
Zurück zum Zitat Roemer PB, Edelstein WA, Hayes CE et al (1990) The NMR phased array. Magn Reson Med 16:192–225CrossRefPubMed Roemer PB, Edelstein WA, Hayes CE et al (1990) The NMR phased array. Magn Reson Med 16:192–225CrossRefPubMed
30.
Zurück zum Zitat Glockner JF, Hu HH, Stanley DW et al (2005) Parallel MR imaging: a user's guide. Radiographics 25:1279–1297CrossRefPubMed Glockner JF, Hu HH, Stanley DW et al (2005) Parallel MR imaging: a user's guide. Radiographics 25:1279–1297CrossRefPubMed
31.
Zurück zum Zitat Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRefPubMed Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRefPubMed
32.
Zurück zum Zitat Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210CrossRefPubMed Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210CrossRefPubMed
33.
Zurück zum Zitat van den Brink JS, Watanabe Y, Kuhl CK et al (2003) Implications of SENSE MR in routine clinical practice. Eur J Radiol 46:3–27CrossRefPubMed van den Brink JS, Watanabe Y, Kuhl CK et al (2003) Implications of SENSE MR in routine clinical practice. Eur J Radiol 46:3–27CrossRefPubMed
34.
Zurück zum Zitat Yoshioka H, Takahashi N, Yamaguchi M et al (2002) Double arterial phase dynamic MRI with sensitivity encoding (SENSE) for hypervascular hepatocellular carcinomas. J Magn Reson Imaging 16:259–266CrossRefPubMed Yoshioka H, Takahashi N, Yamaguchi M et al (2002) Double arterial phase dynamic MRI with sensitivity encoding (SENSE) for hypervascular hepatocellular carcinomas. J Magn Reson Imaging 16:259–266CrossRefPubMed
35.
Zurück zum Zitat Keil B, Blau JN, Biber S et al (2013) A 64-channel 3T array coil for accelerated brain MRI. Magn Reson Med 70:248–258CrossRefPubMed Keil B, Blau JN, Biber S et al (2013) A 64-channel 3T array coil for accelerated brain MRI. Magn Reson Med 70:248–258CrossRefPubMed
36.
Zurück zum Zitat Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42:963–969CrossRefPubMed Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42:963–969CrossRefPubMed
37.
Zurück zum Zitat Lee JH, Choi YH, Cheon JE et al (2015) Improved abdominal MRI in non-breath-holding children using a radial k-space sampling technique. Pediatr Radiol 45:840–846CrossRefPubMed Lee JH, Choi YH, Cheon JE et al (2015) Improved abdominal MRI in non-breath-holding children using a radial k-space sampling technique. Pediatr Radiol 45:840–846CrossRefPubMed
38.
Zurück zum Zitat Chandarana H, Block TK, Rosenkrantz AB et al (2011) Free-breathing radial 3D fat-suppressed T1-weighted gradient echo sequence: a viable alternative for contrast-enhanced liver imaging in patients unable to suspend respiration. Investig Radiol 46:648–653CrossRef Chandarana H, Block TK, Rosenkrantz AB et al (2011) Free-breathing radial 3D fat-suppressed T1-weighted gradient echo sequence: a viable alternative for contrast-enhanced liver imaging in patients unable to suspend respiration. Investig Radiol 46:648–653CrossRef
39.
Zurück zum Zitat Song HK, Dougherty L (2004) Dynamic MRI with projection reconstruction and KWIC processing for simultaneous high spatial and temporal resolution. Magn Reson Med 52:815–824CrossRefPubMed Song HK, Dougherty L (2004) Dynamic MRI with projection reconstruction and KWIC processing for simultaneous high spatial and temporal resolution. Magn Reson Med 52:815–824CrossRefPubMed
40.
Zurück zum Zitat Dougherty L, Isaac G, Rosen MA et al (2007) High frame-rate simultaneous bilateral breast DCE-MRI. Magn Reson Med 57:220–225CrossRefPubMed Dougherty L, Isaac G, Rosen MA et al (2007) High frame-rate simultaneous bilateral breast DCE-MRI. Magn Reson Med 57:220–225CrossRefPubMed
41.
Zurück zum Zitat Feng L, Benkert T, Block KT et al (2017) Compressed sensing for body MRI. J Magn Reson Imaging 45:966–987CrossRefPubMed Feng L, Benkert T, Block KT et al (2017) Compressed sensing for body MRI. J Magn Reson Imaging 45:966–987CrossRefPubMed
42.
Zurück zum Zitat Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195CrossRefPubMed Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195CrossRefPubMed
43.
Zurück zum Zitat Block KT, Uecker M, Frahm J (2007) Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn Reson Med 57:1086–1098CrossRefPubMed Block KT, Uecker M, Frahm J (2007) Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn Reson Med 57:1086–1098CrossRefPubMed
45.
Zurück zum Zitat Zhang T, Yousaf U, Hsiao A et al (2015) Clinical performance of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced pediatric abdominal MR angiography. Pediatr Radiol 45:1635–1643CrossRefPubMedPubMedCentral Zhang T, Yousaf U, Hsiao A et al (2015) Clinical performance of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced pediatric abdominal MR angiography. Pediatr Radiol 45:1635–1643CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Benkert T, Feng L, Sodickson DK et al (2017) Free-breathing volumetric fat/water separation by combining radial sampling, compressed sensing, and parallel imaging. Magn Reson Med 78:565–576CrossRefPubMed Benkert T, Feng L, Sodickson DK et al (2017) Free-breathing volumetric fat/water separation by combining radial sampling, compressed sensing, and parallel imaging. Magn Reson Med 78:565–576CrossRefPubMed
47.
Zurück zum Zitat Feng L, Axel L, Chandarana H et al (2016) XD-GRASP: golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn Reson Med 75:775–788CrossRefPubMed Feng L, Axel L, Chandarana H et al (2016) XD-GRASP: golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn Reson Med 75:775–788CrossRefPubMed
48.
Zurück zum Zitat Chandarana H, Feng L, Block TK et al (2013) Free-breathing contrast-enhanced multiphase MRI of the liver using a combination of compressed sensing, parallel imaging, and golden-angle radial sampling. Investig Radiol 48:10–16CrossRef Chandarana H, Feng L, Block TK et al (2013) Free-breathing contrast-enhanced multiphase MRI of the liver using a combination of compressed sensing, parallel imaging, and golden-angle radial sampling. Investig Radiol 48:10–16CrossRef
49.
Zurück zum Zitat Cheng JY, Zhang T, Ruangwattanapaisarn N et al (2015) Free-breathing pediatric MRI with nonrigid motion correction and acceleration. J Magn Reson Imaging 42:407–420CrossRefPubMed Cheng JY, Zhang T, Ruangwattanapaisarn N et al (2015) Free-breathing pediatric MRI with nonrigid motion correction and acceleration. J Magn Reson Imaging 42:407–420CrossRefPubMed
50.
Zurück zum Zitat Zhang T, Cheng JY, Potnick AG et al (2015) Fast pediatric 3D free-breathing abdominal dynamic contrast enhanced MRI with high spatiotemporal resolution. J Magn Reson Imaging 41:460–473CrossRefPubMed Zhang T, Cheng JY, Potnick AG et al (2015) Fast pediatric 3D free-breathing abdominal dynamic contrast enhanced MRI with high spatiotemporal resolution. J Magn Reson Imaging 41:460–473CrossRefPubMed
52.
Zurück zum Zitat Chang CH, Yu X, Ji JX (2017) Compressed sensing MRI reconstruction from 3D multichannel data using GPUs. Magn Reson Med 78:2265–2274CrossRefPubMed Chang CH, Yu X, Ji JX (2017) Compressed sensing MRI reconstruction from 3D multichannel data using GPUs. Magn Reson Med 78:2265–2274CrossRefPubMed
54.
Zurück zum Zitat Setsompop K, Cohen-Adad J, Gagoski BA et al (2012) Improving diffusion MRI using simultaneous multi-slice echo planar imaging. NeuroImage 63:569–580CrossRefPubMedPubMedCentral Setsompop K, Cohen-Adad J, Gagoski BA et al (2012) Improving diffusion MRI using simultaneous multi-slice echo planar imaging. NeuroImage 63:569–580CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Obele CC, Glielmi C, Ream J et al (2015) Simultaneous multislice accelerated free-breathing diffusion-weighted imaging of the liver at 3T. Abdom Imaging 40:2323–2330CrossRefPubMed Obele CC, Glielmi C, Ream J et al (2015) Simultaneous multislice accelerated free-breathing diffusion-weighted imaging of the liver at 3T. Abdom Imaging 40:2323–2330CrossRefPubMed
56.
Zurück zum Zitat Longo MG, Fagundes J, Huang S et al (2017) Simultaneous multislice-based 5-minute lumbar spine MRI protocol: initial experience in a clinical setting. J Neuroimaging 27:442–446CrossRefPubMed Longo MG, Fagundes J, Huang S et al (2017) Simultaneous multislice-based 5-minute lumbar spine MRI protocol: initial experience in a clinical setting. J Neuroimaging 27:442–446CrossRefPubMed
Metadaten
Titel
Fast, free-breathing and motion-minimized techniques for pediatric body magnetic resonance imaging
verfasst von
Camilo Jaimes
John E. Kirsch
Michael S. Gee
Publikationsdatum
01.08.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Radiology / Ausgabe 9/2018
Print ISSN: 0301-0449
Elektronische ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-018-4116-x

Weitere Artikel der Ausgabe 9/2018

Pediatric Radiology 9/2018 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.