Skip to main content
Log in

Modification of chest radiography exposure parameters using a neonatal chest phantom

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

The acquisition of chest radiographs in neonates is of critical importance in diagnostics because of the risk of respiratory distress syndrome and pneumothorax in preterm infants.

Objective

To achieve a dose reduction while preserving a diagnostic image quality for chest radiographs of neonates.

Materials and methods

All radiographs, generated on a fully digital X-ray unit by using a neonatal chest phantom, were evaluated under variation of the tube voltage (40–70 kV) and mAs levels (1–10.2 mAs) with and without an additional 0.1-mm copper (Cu) filtration. Noise, contrast and contrast-to-noise ratio for bronchus, heart, lungs and vessels were determined. Visual assessment of the image quality was carried out by three radiologists using a Likert scale. To evaluate a maximally possible dose reduction, the dose of the radiographs with still acceptable image quality at a minimal dose was compared to the dose of the radiographs with the standard settings used in clinical routine.

Results

The noise showed decreasing values with increasing dose, while the contrast values were increased. For the contrast-to-noise ratio, a digressive course of the values as a function of the tube voltage was found. The visual evaluation of image quality showed the best evaluation of the structures at the lowest possible dose in the settings (44 kV, 3.36 mAs) with copper filtration and in the settings (44 kV, 1.56 mAs) without copper filtration. A maximum dose reduction from 8.29 μSv to 2.21 μSv (about 73%) was obtained.

Conclusion

A dose reduction while preserving diagnostic image quality in a digital X-ray system is generally possible by reducing the tube voltage and simultaneous adaptation of the mAs settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Speer CP (1999) lung diseases of the neonatal. in Harnack GA, Koletzko B (ed) Kinderheilkunde (Pediatrics). 11th edn. Springer Verlag, Berlin, pp 78-86

  2. Hahn G, Glutig K (2009) medical imaging. in: Pädiatrie. 3rd edn. Springer, Berlin, Heidelberg, pp 1025-1041

    Chapter  Google Scholar 

  3. Bundesärztekammer (2008) guidelines of the Federal Medical Association for quality assurance in radiodiagnostics. http://www.bundesaerztekammer.de/downloads/LeitRoentgen2008Korr2

  4. Hall EJ (2002) Lessons we have learned from our children: cancer risks from diagnostic radiology. Pediatr Radiol 32:700–706

    Article  Google Scholar 

  5. Spahn M, Heer V, Freytag R (2003) Flat-panel detectors in X-ray systems. Radiologe 43:340–350

    Article  CAS  Google Scholar 

  6. Hamers S, Freyschmidt J, Neitzel U (2001) Digital radiography with large-scale electronic flat-panel detector vs screen-film radiography: observer preference in clinical skeletal diagnostics. Eur Radiol 11:1753–1759

    Article  CAS  Google Scholar 

  7. Busch HP (1999) Digial projection radiography. Technical bases. Imaging quality and usefulness. Radiologe 39:710–724

    Article  CAS  Google Scholar 

  8. Gammex Inc (2008) Physics behind the phantom, volume 2: the neonatal chest. A white paper report. http://cspmedical.com/content/102-1922_neonatal_phantom_white_paper.pdf

  9. Becht S, Bittner R, Ohmstede A et al (2008) Zimmer-Brossy M (ed) Textbook of the X-ray diagnostic adjustment technique, 6th edn. Springer-Verlag, Berlin

  10. Bach M, Wesemann W, Kolling et al (2008) Photopic contrst sensitivity. Local contrast perception. Ophthalmologe 105:46–59

    Article  CAS  Google Scholar 

  11. DIN Deutsches Institut für Normung e.V (1997) terminology of physiological optics. (DIN 5340). Beuth, Berlin

  12. Hess R, Neitzel U (2012) Optimizing image qualitiy and dose for digital radiography of distal pediatric extremeities using the contrast-to-noise ratio. Rofo 184:643–649

    Article  CAS  Google Scholar 

  13. Mohrs OK, Pettersen SE, Schulze T (2010) High-resolution 3D unenhanced ECG-gated respiratory-navigated MR angiography of the renal arteries: comparison with contrast-enhanced MR angiography. AJR Am J Roentgenol 195:1423–1428

    Article  Google Scholar 

  14. Körner M, Wirth S, Treitl M et al (2005) Initial clinical results with a new needle screen storage phosphor system in chest radiograms. Rofo 177:1491–1496

    Article  Google Scholar 

  15. Bulla S, Pache G, Blanke P et al (2011) Reduction of radiation dose in low-dose CT of the paranasal sinuses using iterative image reconstruction: feasibility and image quality. Rofo 183:VO409_1

    Google Scholar 

  16. Gosch G, Gosch K, Kahn T (2007) Conversion coefficients for estimation of effective dose to patients from dose area product during fluoroscopy x-ray examinations. Rofo 179:1035–1042

    Article  CAS  Google Scholar 

  17. Gislason AJ, Davies AG, Cowen AR (2010) Dose optimization in pediatric cardiac x-ray imaging. Med Phys 37:5258–5269

    Article  Google Scholar 

  18. Hansson B, Finnbogason T, Schuwert P, Persliden J (1997) Added copper filtration in digital paediatric double-contrast colon examinations: effects on radiation dose and image quality. Eur Radiol:1117–1122

    Article  CAS  Google Scholar 

  19. Redlich U, Hoeschen C, Doehring W (2005) Assessment and optimisation of the image quality of chest-radiography systems. Radiat Prot Dosimetry 114:264–268

    Article  CAS  Google Scholar 

  20. Smet MH, Breysem L, Mussen E et al (2018) Visual grading analysis of digital neonatal chest phantom X-ray images: impact of detector type, dose and image processing on image quality. Eur Radiol 28:2951–2959

    Article  CAS  Google Scholar 

  21. Rattan AS, Cohen MD (2013) Removal of comfort pads underneath babies. a method of reducing Radiation exposure to neonates Acad Radiol 20:1297–1300

    PubMed  Google Scholar 

  22. Stenzel M, Mentzel HJ (2011) Digitale Thorax-Radiographie in der Neonatologie - Dose optimization using a neonatal phantom. Monatsschr Kinderheilkd 159(Suppl 3):230–240

  23. Smans K, Struelens L, Smet M et al (2010) Cu filtration for dose reduction in neonatal chest imaging. Radiat Prot Dosim 139:281–286

    Article  CAS  Google Scholar 

  24. Launders JH, Cowen AR, Bury RF, Hawkridge P (2001) Towards image quality, beam energy and effective dose optimisation in digital thoracic radiography. Eur Radiol 11:870–875

    Article  CAS  Google Scholar 

  25. Wiltz HJ, Petersen U, Axelsson B (2005) Reduction of absorbed dose in storage phosphor urography by significant lowering of tube voltage and adjustment of image display parameters. Acta Radiol 46:391–395

    Article  CAS  Google Scholar 

  26. Steidle G (2004) Two-dimensional parallel acquisition technique in 3D MR colonography. Fortschr Röntgenstr 176(08)

    Article  CAS  Google Scholar 

  27. Rühm SG, Debatin JF (1999) Contrast-enhanced 3D MR-angiography of the thorax, abdomen and lower extremities. Radiologe 39:100–109

    Article  Google Scholar 

  28. Schaefer-Prokop CM, Prokop M (1996) Digital radiography of the thorax - the selenium detector compared to other imaging systems. Kontraste 09: 14-23

  29. Schaefer-Prokop CM (1997) Digital Radiography of the Thorax - A system comparison, taking into account dose requirements and diagnostic performance in comparison to conventional film-screen radiography [Habilschr med.]. Hannover: Medical College

  30. Dougeni ED, Delis HB, Karatza AA et al (2007) Dose and image quality optimization in neonatal radiography. Br J Radiol 80:807–815

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan B. Schäfer.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schäfer, S.B., Papst, S., Fiebich, M. et al. Modification of chest radiography exposure parameters using a neonatal chest phantom. Pediatr Radiol 50, 28–37 (2020). https://doi.org/10.1007/s00247-019-04522-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-019-04522-1

Keywords

Navigation