Skip to main content

Advertisement

Log in

Structural Shifts of Fecal Microbial Communities in Rats with Acute Rejection after Liver Transplantation

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Bacterial translocation and the development of sepsis after orthotopic liver transplantation (OLT) may be promoted by immunological damage to the intestinal mucosa or by quantitative and qualitative changes in intestinal microbiota. This study monitored structural shifts of gut microbiota in rats with OLT using PCR-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (RT-qPCR). RT-qPCR targets six major microorganisms (Domain Bacteria, Bacteroides, Bifidobacteria, Enterobacteriaceae, Lactobacillus and Clostridium leptum subgroup). Isograft, Allograft and Sham model were studied. Bacterial translocation to host organs and plasma endotoxin were determined. Alteration in gut microbiota was associated with the elevation of plasma endotoxin and a higher rate of bacterial translocation (BT) to liver in rats with acute rejection. Dynamic analysis of DGGE fingerprints showed that the gut microbiota structure of animals in the three groups was similar before the operation. But significant alterations in the composition of fecal microbiota in Allograft group were observed at 1 and 2 weeks after the OLT. The acute rejection was accompanied by the shifts of gut microbiota towards members of Bacteroides and Ruminococcus. Results from RT-qPCR indicated that Bacteroides significantly increased at 2 weeks after the OLT, whereas numbers of Bifidobacterium spp. decreased at 1 week and recovered at 2 weeks after the OLT. In summary, our data showed that rats with acute rejection after OLT exhibited significant structure shifts in the gut microbiota which dominant by overgrowth of Bacteroides and Ruminococcus, and these were associated with elevation of plasma endotoxin and higher rate of BT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

OLT:

Orthotopic liver transplantation

BT:

Bacterial translocation

References

  1. Roberts MS, Angus DC, Bryce CL, Valenta Z, Weissfeld L (2004) Survival after liver transplantation in the United States: a disease-specific analysis of the UNOS database. Liver Transpl 10:886–897

    Article  PubMed  Google Scholar 

  2. Barkholt L, Ericzon BG, Tollemar J, Malmborg AS, Ehrnst A, Wilczek H, Andersson J (1993) Infections in human liver recipients: different patterns early and late after transplantation. Transpl Int 6:77–84

    Article  PubMed  CAS  Google Scholar 

  3. Cicalese L, Sileri P, Green M, Abu-Elmagd K, Kocoshis S, Reyes J (2001) Bacterial translocation in clinical intestinal transplantation. Transplantation 71:1414–1417

    Article  PubMed  CAS  Google Scholar 

  4. Nishida S, Levi D, Kato T, Nery JR, Mittal N, Hadjis N, Madariaga J, Tzakis AG (2002) Ninety-five cases of intestinal transplantation at the University of Miami. J Gastrointest Surg 6:233–239

    Article  PubMed  Google Scholar 

  5. Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361:512–519

    Article  PubMed  Google Scholar 

  6. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host–bacterial mutualism in the human intestine. Science 307:1915–1920

    Article  PubMed  Google Scholar 

  7. Zoetendal EG, Collier CT, Koike S, Mackie RI, Gaskins HR (2004) Molecular ecological analysis of the gastrointestinal microbiota: a review. J Nutr 134:465–472

    PubMed  CAS  Google Scholar 

  8. Mai V, Morris JG Jr (2004) Colonic bacterial flora: changing understandings in the molecular age. J Nutr 134:459–464

    PubMed  CAS  Google Scholar 

  9. Sheehy EC, Beighton D, Roberts GJ (2000) The oral microbiota of children undergoing liver transplantation. Oral Microbiol Immunol 15:203–210

    Article  PubMed  CAS  Google Scholar 

  10. Kamada N, Calne RY (1983) A surgical experience with five hundred thirty liver transplants in the rat. Surgery 93:64–69

    PubMed  CAS  Google Scholar 

  11. Xing HC, Li LJ, Xu KJ, Shen T, Chen YB, Sheng JF, Chen Y, Fu SZ, Chen CL, Wang JG, Yan D, Dai FW, Zheng SS (2006) Protective role of supplement with foreign Bifidobacterium and Lactobacillus in experimental hepatic ischemia–reperfusion injury. J Gastroenterol Hepatol 21:647–656

    Article  PubMed  Google Scholar 

  12. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  13. Thompson JR, Marcelino LA, Polz MF (2002) Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by ‘reconditioning PCR’. Nucleic Acids Res 30:2083–2088

    Article  PubMed  CAS  Google Scholar 

  14. Lipp JS, Morono Y, Inagaki F, Hinrichs KU (2008) Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454:991–994

    Article  PubMed  CAS  Google Scholar 

  15. Heilig HG, Zoetendal EG, Vaughan EE, Marteau P, Akkermans AD, de Vos WM (2002) Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 68:114–123

    Article  PubMed  CAS  Google Scholar 

  16. Wise MG, Siragusa GR (2007) Quantitative analysis of the intestinal bacterial community in one- to three-week-old commercially reared broiler chickens fed conventional or antibiotic-free vegetable-based diets. J Appl Microbiol 102:1138–1149

    PubMed  CAS  Google Scholar 

  17. Osten DW (1988) Selection of optimal regression models via cross-validation. J Chemometrics 2:39–48

    Article  Google Scholar 

  18. Westad FMH (2000) Variable selection in near infrared spectroscopy based on significance testing in partial least squares regression. J Near Infrared 8:117–124

    Article  CAS  Google Scholar 

  19. Cucchiara S, Iebba V, Conte MP, Schippa S (2009) The microbiota in inflammatory bowel disease in different age groups. Dig Dis 27:252–258

    Article  PubMed  Google Scholar 

  20. Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, Parameswaran P, Crowell MD, Wing R, Rittmann BE, Krajmalnik-Brown R (2009) Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci USA 106:2365–2370

    Article  PubMed  CAS  Google Scholar 

  21. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sorensen SJ, Hansen LH, Jakobsen M Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5:e9085

  22. Li LJ, Wu ZW, Xiao DS, Sheng JF (2004) Changes of gut flora and endotoxin in rats with d-galactosamine-induced acute liver failure. World J Gastroenterol 10:2087–2090

    PubMed  CAS  Google Scholar 

  23. Xing HC, Li LJ, Xu KJ, Shen T, Chen YB, Sheng JF, Yu YS, Chen YG (2005) Intestinal microflora in rats with ischemia/reperfusion liver injury. J Zhejiang Univ Sci B 6:14–21

    PubMed  Google Scholar 

  24. Heimesaat MM, Nogai A, Bereswill S, Plickert R, Fischer A, Loddenkemper C, Steinhoff U, Tchaptchet S, Thiel E, Freudenberg MA, Gobel UB, Uharek L MyD88/TLR9 mediated immunopathology and gut microbiota dynamics in a novel murine model of intestinal graft-versus-host disease. Gut 59:1079–1087

  25. Macfarlane S, Macfarlane GT (2004) Bacterial diversity in the human gut. Adv Appl Microbiol 54:261–289

    Article  PubMed  CAS  Google Scholar 

  26. Vitali B, Pugliese C, Biagi E, Candela M, Turroni S, Bellen G, Donders GG, Brigidi P (2007) Dynamics of vaginal bacterial communities in women developing bacterial vaginosis, candidiasis, or no infection, analyzed by PCR-denaturing gradient gel electrophoresis and real-time PCR. Appl Environ Microbiol 73:5731–5741

    Article  PubMed  CAS  Google Scholar 

  27. Fite A, Macfarlane GT, Cummings JH, Hopkins MJ, Kong SC, Furrie E, Macfarlane S (2004) Identification and quantitation of mucosal and faecal Desulfovibrios using real time polymerase chain reaction. Gut 53:523–529

    Article  PubMed  CAS  Google Scholar 

  28. Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118

    Article  PubMed  CAS  Google Scholar 

  29. Besselink MG, Timmerman HM, van Minnen LP, Akkermans LM, Gooszen HG (2005) Prevention of infectious complications in surgical patients: potential role of probiotics. Dig Surg 22:234–244

    Article  PubMed  Google Scholar 

  30. Zou Y, Hernandez F, Burgos E, Martinez L, Gonzalez-Reyes S, Fernandez-Dumont V, Lopez G, Romero M, Lopez-Santamaria M, Tovar JA (2005) Bacterial translocation in acute rejection after small bowel transplantation in rats. Pediatr Surg Int 21:208–211

    Article  PubMed  CAS  Google Scholar 

  31. Heimesaat MM, Fischer A, Siegmund B, Kupz A, Niebergall J, Fuchs D, Jahn HK, Freudenberg M, Loddenkemper C, Batra A, Lehr HA, Liesenfeld O, Blaut M, Gobel UB, Schumann RR, Bereswill S (2007) Shift towards pro-inflammatory intestinal bacteria aggravates acute murine colitis via Toll-like receptors 2 and 4. PLoS One 2:e662

    Article  PubMed  Google Scholar 

  32. Heimesaat MM, Fischer A, Jahn HK, Niebergall J, Freudenberg M, Blaut M, Liesenfeld O, Schumann RR, Gobel UB, Bereswill S (2007) Exacerbation of murine ileitis by Toll-like receptor 4 mediated sensing of lipopolysaccharide from commensal Escherichia coli. Gut 56:941–948

    Article  PubMed  CAS  Google Scholar 

  33. Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC, Finlay BB (2007) Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2:204

    Article  PubMed  CAS  Google Scholar 

  34. Strober W, Fuss I, Mannon P (2007) The fundamental basis of inflammatory bowel disease. J Clin Invest 117:514–521

    Article  PubMed  CAS  Google Scholar 

  35. Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loening-Baucke V, Ortner M, Weber J, Hoffmann U, Schreiber S, Dietel M, Lochs H (2002) Mucosal flora in inflammatory bowel disease. Gastroenterology 122:44–54

    Article  PubMed  Google Scholar 

  36. Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, Glasser AL, Barnich N, Bringer MA, Swidsinski A, Beaugerie L, Colombel JF (2004) High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology 127:412–421

    Article  PubMed  Google Scholar 

  37. Dietrich W, Beelen AE, Müller K-D, Hirche H, Schaefer UW (1999) Influence of intestinal bacterial decontamination using metronidazole and ciprofloxacin or ciprofloxacin alone on the development of acute graft-versus-host disease after marrow transplantation in patients with hematologic malignancies: final results and long-term follow-up of an open-label prospective randomized trial. Blood 15:3267–3275

    Google Scholar 

  38. Heimesaat MM, Bereswill S, Fischer A, Fuchs D, Struck D, Niebergall J, Jahn HK, Dunay IR, Moter A, Gescher DM, Schumann RR, Gobel UB, Liesenfeld O (2006) Gram-negative bacteria aggravate murine small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii. J Immunol 177:8785–8795

    PubMed  CAS  Google Scholar 

  39. Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H (2005) Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol 43:3380–3389

    Article  PubMed  Google Scholar 

  40. Oh PL, Martinez I, Sun Y, Walter J, Peterson DA, Mercer DF (2012) Characterization of the ileal microbiota in rejecting and nonrejecting recipients of small bowel transplants. Am J Transplant 12:753–762

    Google Scholar 

  41. Hoffmann C, Hill DA, Minkah N, Kirn T, Troy A, Artis D, Bushman F (2009) Community-wide response of the gut microbiota to enteropathogenic Citrobacter rodentium infection revealed by deep sequencing. Infect Immun 77:4668–4678

    Article  PubMed  CAS  Google Scholar 

  42. Fishbein T, Novitskiy G, Mishra L, Matsumoto C, Kaufman S, Goyal S, Shetty K, Johnson L, Lu A, Wang A, Hu F, Kallakury B, Lough D, Zasloff M (2008) NOD2-expressing bone marrow-derived cells appear to regulate epithelial innate immunity of the transplanted human small intestine. Gut 57:323–330

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Keystone Basic Research Program (973 Program), China (2007CB513000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Ruan or Lanjuan Li.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table S1

16S rDNA real-time qPCR primers used to profile fecal samples (DOC 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Y., Luo, Z., Li, Z. et al. Structural Shifts of Fecal Microbial Communities in Rats with Acute Rejection after Liver Transplantation. Microb Ecol 64, 546–554 (2012). https://doi.org/10.1007/s00248-012-0030-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0030-1

Keywords

Navigation