Skip to main content

Advertisement

Log in

Distinct Bacterial Communities Dominate Tropical and Temperate Zone Leaf Litter

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Little is known of the bacterial community of tropical rainforest leaf litter and how it might differ from temperate forest leaf litter and from the soils underneath. We sampled leaf litter in a similarly advanced stage of decay, and for comparison, we also sampled the surface layer of soil, at three tropical forest sites in Malaysia and four temperate forest sites in South Korea. Illumina sequencing targeting partial bacterial 16S ribosomal ribonucleic acid (rRNA) gene revealed that the bacterial community composition of both temperate and tropical litter is quite distinct from the soils underneath. Litter in both temperate and tropical forest was dominated by Proteobacteria and Actinobacteria, while soil is dominated by Acidobacteria and, to a lesser extent, Proteobacteria. However, bacterial communities of temperate and tropical litter clustered separately from one another on an ordination. The soil bacterial community structures were also distinctive to each climatic zone, suggesting that there must be a climate-specific biogeographical pattern in bacterial community composition. The differences were also found in the level of diversity. The temperate litter has a higher operational taxonomic unit (OTU) diversity than the tropical litter, paralleling the trend in soil diversity. Overall, it is striking that the difference in community composition between the leaf litter and the soil a few centimeters underneath is about the same as that between leaf litter in tropical and temperate climates, thousands of kilometers apart. However, one substantial difference was that the leaf litter of two tropical forest sites, Meranti and Forest Research Institute Malaysia (FRIM), was overwhelmingly dominated by the single genus Burkholderia, at 37 and 23 % of reads, respectively. The 454 sequencing result showed that most Burkholderia species in tropical leaf litter belong to nonpathogenic “plant beneficial” lineages. The differences from the temperate zone in the bacterial community of tropical forest litter may be partly a product of its differing chemistry, although the unvarying climate might also play a role, as might interactions with other organisms such as fungi. The single genus Burkholderia may be seen as potentially playing a major role in decomposition and nutrient cycling in tropical forests, but apparently not in temperate forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chapin FS, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, New York

    Google Scholar 

  2. Gulis V, Suberkropp K (2003) Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshw Biol 48:123–134

    Article  Google Scholar 

  3. Grogan P, Illeris L, Michelsen A, Jonasson S (2001) Respiration of recently-fixed plant carbon dominates mid-winter ecosystem CO2 production in sub-arctic heath tundra. Clim Chang 50:129–142

    Article  CAS  Google Scholar 

  4. Cornelissen JHC, van Bodegom PM, Aerts R, Callaghan TV, van Logtestijn RSP, Alatalo J, Chapin FS, Gerdol R, Gudmundsson J, Gwynn-Jones D, Hartley AE, Hik DS, Hofgaard A, Jonsdottir IS, Karlsson S, Klein JA, Laundre J, Magnusson B, Michelsen A, Molau U, Onipchenko VG, Quested HM, Sandvik SM, Schmidt IK, Shaver GR, Solheim B, Soudzilovskaia NA, Stenstrom A, Tolvanen A, Totland O, Wada N, Welker JM, Zhao XQ (2007) Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol Lett 10:619–627

    Article  PubMed  Google Scholar 

  5. Yadav V, Malanson G (2007) Progress in soil organic matter research: litter decomposition, modelling, monitoring and sequestration. Prog Phys Geogr 31:131–154

    Article  Google Scholar 

  6. Berg B, Laskowski R (2006) Litter decomposition: a guide to carbon and nutrient turnover. Acadenuc Press, Amsterdam

    Google Scholar 

  7. Snajdr J, Cajthaml T, Valaskova V, Merhautova V, Petrankova M, Spetz P, Leppanen K, Baldrian P (2011) Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition. FEMS Microbiol Ecol 75:291–303

    Article  CAS  PubMed  Google Scholar 

  8. Packham JR, Harding DJL, Hilton GM, Stuttard RA (1994) Functional ecology of woodlands and forests (vol 4, Pg 861, 1992). J Veg Sci 5:288–288

    Article  Google Scholar 

  9. Kuehn KA, Lemke MJ, Suberkropp K, Wetzel RG (2000) Microbial biomass and production associated with decaying leaf litter of the emergent macrophyte Juncus effusus. Limnol Oceanogr 45:862–870

    Article  CAS  Google Scholar 

  10. Findlay SEG, Dye S, Kuehn KA (2002) Microbial growth and nitrogen retention in litter of Phragmites australis compared to Typha angustifolia. Wetlands 22:616–625

    Article  Google Scholar 

  11. Kirk TK, Farrell RL (1987) Enzymatic combustion—the microbial-degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  CAS  PubMed  Google Scholar 

  12. Kominkova D, Kuehn KA, Busing N, Steiner D, Gessner MO (2000) Microbial biomass, growth, and respiration associated with submerged litter of Phragmites australis decomposing in a littoral reed stand of a large lake. Aquat Microb Ecol 22:271–282

    Article  Google Scholar 

  13. Romani AM, Fischer H, Mille-Lindblom C, Tranvik LJ (2006) Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology 87:2559–2569

    Article  PubMed  Google Scholar 

  14. Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G, Roschitzki B, Richter A, Eberl L, Zechmeister-Boltenstern S, Riedel K (2012) Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J 6:1749–1762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Pankratov TA, Ivanova AO, Dedysh SN, Liesack W (2011) Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environ Microbiol 13:1800–1814

    Article  CAS  PubMed  Google Scholar 

  16. Stursova M, Zifcakova L, Leigh MB, Burgess R, Baldrian P (2012) Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol Ecol 80:735–746

    Article  CAS  PubMed  Google Scholar 

  17. Blanchette RA (1995) Degradation of the lignocellulose complex in wood. Can J Bot 73:S999–S1010

    Article  CAS  Google Scholar 

  18. Singh AP (1997) The ultrastructure of the attack of Pinus radiata mild compression wood by erosion and tunnelling bacteria. Can J Bot 75:1095–1102

    Article  Google Scholar 

  19. Kirby R (2005) Actinomycetes and lignin degradation. Adv Appl Microbiol 58:125–168

    Article  Google Scholar 

  20. Rawat SR, Mannisto MK, Bromberg Y, Haggblom MM (2012) Comparative genomic and physiological analysis provides insights into the role of Acidobacteria in organic carbon utilization in Arctic tundra soils. FEMS Microbiol Ecol 82:341–355

    Article  CAS  PubMed  Google Scholar 

  21. Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J, Barabote RD, Bradley B, Brettin TS, Brinkac LM, Bruce D, Creasy T, Daugherty SC, Davidsen TM, Deboy RT, Detter JC, Dodson RJ, Durkin AS, Ganapathy A, Gwinn-Giglio M, Han CS, Khouri H, Kiss H, Kothari SP, Madupu R, Nelson KE, Nelson WC, Paulsen I, Penn K, Ren QH, Rosovitz MJ, Selengut JD, Shrivastava S, Sullivan SA, Tapia R, Thompson LS, Watkins KL, Yang Q, Yu CH, Zafar N, Zhou LW, Kuske CR (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microb 75:2046–2056

    Article  CAS  Google Scholar 

  22. Baldrian P, Kolarik M, Stursova M, Kopecky J, Valaskova V, Vetrovsky T, Zifcakova L, Snajdr J, Ridl J, Vlcek C, Voriskova J (2012) Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J 6:248–258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Huse SM, Dethlefsen L, Huber JA, Welch DM, Relman DA, Sogin ML (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 4

  24. Zhou HW, Li DF, Tam NFY, Jiang XT, Zhang H, Sheng HF, Qin J, Liu X, Zou F (2011) BIPES, a cost-effective high-throughput method for assessing microbial diversity. ISME J 5:741–749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012) PANDAseq: paired-end assembler for illumina sequences. BMC Bioinforma 13:31

    Article  CAS  Google Scholar 

  26. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microb 75:7537–7541

    Article  CAS  Google Scholar 

  27. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  28. Oh YM, Kim M, Lee-Cruz L, Lai-Hoe A, Go R, Ainuddin N, Rahim RA, Shukor N, Adams JM (2012) Distinctive bacterial communities in the rhizoplane of four tropical tree species. Microb Ecol 64:1018–1027

    Article  PubMed  Google Scholar 

  29. Jeon YS, Chung HW, Park S, Hur I, Lee JH, Chun J (2005) jPHYDIT: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 21:3171–3173

    Article  CAS  PubMed  Google Scholar 

  30. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microb 71:8228–8235

    Article  CAS  Google Scholar 

  31. Clarke KR, Gorley RN (2006) Primer v6: user manual/tutorials. Primer-E Ltd, Plymouth, UK

    Google Scholar 

  32. Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens HH, Wagner H (2007) vegan: community ecology package. R package version 20–6.

  33. White JR, Nagarajan N, Pop M (2009) Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol 5:e1000352

    Article  PubMed Central  PubMed  Google Scholar 

  34. Suarez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonca-Previato L, James EK, Venturi V (2012) Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb Ecol 63:249–266

    Article  PubMed  Google Scholar 

  35. Estrada-de Los Santos P, Vinuesa P, Martinez-Aguilar L, Hirsch AM, Caballero-Mellado J (2013) Phylogenetic analysis of Burkholderia species by multilocus sequence analysis. Curr Microbiol 67(1):51–60

    Article  CAS  PubMed  Google Scholar 

  36. Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Hogberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620

    Article  CAS  PubMed  Google Scholar 

  37. McGuire KL, Fierer N, Bateman C, Treseder KK, Turner BL (2012) Fungal community composition in neotropical rain forests: the influence of tree diversity and precipitation. Microb Ecol 63:804–812

    Article  PubMed  Google Scholar 

  38. Bastian F, Bouziri L, Nicolardot B, Ranjard L (2009) Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biol Biochem 41:262–275

    Article  CAS  Google Scholar 

  39. Haichar FEZ, Achouak W, Christen R, Heulin T, Marol C, Marais MF, Mougel C, Ranjard L, Balesdent J, Berge O (2007) Identification of cellulolytic bacteria in soil by stable isotope probing. Environ Microbiol 9:625–634

    Article  PubMed  Google Scholar 

  40. Ulrich A, Klimke G, Wirth S (2008) Diversity and activity of cellulose-decomposing bacteria, isolated from a sandy and a loamy soil after long-term manure application. Microb Ecol 55:512–522

    Article  PubMed  Google Scholar 

  41. McFee WW, Kelly JM, Soil Science Society of America (1995) Carbon forms and functions in forest soils. Soil Science Society of America, Madison

    Google Scholar 

  42. Grime JP (1973) Control of species density in herbaceous vegatation. J Environ Manag 1:151–167

    Google Scholar 

  43. Huston MA (1994) Biological diversity: the coexistence of species on changing landscapes. Cambridge University Press, Cambridge, U.K.

  44. Giller PS (1996) The diversity of soil communities, the 'poor man’s tropical rainforest'. Biodivers Conserv 5:135–168

    Article  Google Scholar 

  45. Hattenschwiler S, Coq S, Barantal S, Handa IT (2011) Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis. New Phytol 189:950–965

    Article  PubMed  Google Scholar 

  46. Stout RJ (1989) Effects of condensed tannins on leaf processing in mid-latitude and tropical streams—a theoretical approach. Can J Fish Aquat Sci 46:1097–1106

    Article  CAS  Google Scholar 

  47. Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay-rates—a microcosm test. Ecology 70:97–104

    Article  Google Scholar 

  48. Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci U S A 109:21390–21395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Yang HC, Im WT, Kim KK, An DS, Lee ST (2006) Burkholderia terrae sp nov, isolated from a forest soil. Int J Syst Evol Microbiol 56:453–457

    Article  CAS  PubMed  Google Scholar 

  50. Schellenberger S, Kolb S, Drake HL (2010) Metabolic responses of novel cellulolytic and saccharolytic agricultural soil bacteria to oxygen. Environ Microbiol 12:845–861

    Article  CAS  PubMed  Google Scholar 

  51. Nakamura A, Tun CC, Asakawa S, Kimura M (2003) Microbial community responsible for the decomposition of rice straw in a paddy field: estimation by phospholipid fatty acid analysis. Biol Fertil Soils 38:288–295

    Article  CAS  Google Scholar 

  52. Aneja MK, Sharma S, Fleischmann F, Stich S, Heller W, Bahnweg G, Munch JC, Schloter M (2006) Microbial colonization of beech and spruce litter—influence of decomposition site and plant litter species on the diversity of microbial community. Microb Ecol 52:127–135

    Article  PubMed  Google Scholar 

  53. Paul EA, Clark FE (1996) Soil microbiology and biochemistry. Academic, San Diego

    Google Scholar 

  54. Frankland JC (1998) Fungal succession—unravelling the unpredictable. Mycol Res 102:1–15

    Article  Google Scholar 

  55. Bontemps C, Elliott GN, Simon MF, Dos Reis FBD, Gross E, Lawton RC, Neto NE, Loureiro MD, De Faria SM, Sprent JI, James EK, Young JPW (2010) Burkholderia species are ancient symbionts of legumes. Mol Ecol 19:44–52

    Article  CAS  PubMed  Google Scholar 

  56. Martinez-Aguilar L, Diaz R, Pena-Cabriales JJ, Estrada-de los Santos P, Dunn MF, Caballero-Mellado J (2008) Multichromosomal genome structure and confirmation of diazotrophy in novel plant-associated Burkholderia species. Appl Environ Microb 74:4574–4579

    Article  CAS  Google Scholar 

  57. Aizawa T, Vijarnsorn P, Nakajima M, Sunairi M (2011) Burkholderia bannensis sp nov., an acid-neutralizing bacterium isolated from torpedo grass (Panicum repens) growing in highly acidic swamps. Int J Syst Evol Microbiol 61:1645–1650

    Article  CAS  PubMed  Google Scholar 

  58. Chen WM, de Faria SM, Chou JH, James EK, Elliott GN, Sprent JI, Bontemps C, Young JPW, Vandamme P (2008) Burkholderia sabiae sp nov., isolated from root nodules of Mimosa caesalpiniifolia. Int J Syst Evol Microbiol 58:2174–2179

    Article  CAS  PubMed  Google Scholar 

  59. Gyaneshwar P, Hirsch AM, Moulin L, Chen WM, Elliott GN, Bontemps C, Estrada-de los Santos P, Gross E, dos Reis FB, Sprent JI, Young JPW, James EK (2011) Legume-nodulating Betaproteobacteria: diversity, host range, and future prospects. Mol Plant Microbe Interact 24:1276–1288

    Article  CAS  PubMed  Google Scholar 

  60. Lu P, Zheng LQ, Sun JJ, Liu HM, Li SP, Hong Q, Li WJ (2012) Burkholderia zhejiangensis sp nov., a methyl-parathion-degrading bacterium isolated from a wastewater-treatment system. Int J Syst Evol Microbiol 62:1337–1341

    Article  CAS  PubMed  Google Scholar 

  61. Adams JS (2009) Species richness: patterns in the diversity of life. Springer, Berlin, New York

    Book  Google Scholar 

  62. Chesson PL, Warner RR (1981) Environmental variability promotes coexistence in lottery competitive-systems. Am Nat 117:923–943

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation (NRF) grant funded by the Korean government, Ministry of Education, Science and Technology (MEST) (NRF 2013-031400). We thank Ng Yong Jin and Yoonmyung Oh for their help with sampling and experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Adams.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 244 kb)

ESM 2

(XLSX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M., Kim, WS., Tripathi, B.M. et al. Distinct Bacterial Communities Dominate Tropical and Temperate Zone Leaf Litter. Microb Ecol 67, 837–848 (2014). https://doi.org/10.1007/s00248-014-0380-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0380-y

Keywords

Navigation