Skip to main content

Advertisement

Log in

Voltage-gated Na+ channels: multiplicity of expression, plasticity, functional implications and pathophysiological aspects

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Voltage-gated Na+ channels (VGSCs) are well known for mediating regenerative cell membrane depolarization and conduction of electrical signalling in nerves and muscles. However, VGSCs may also be expressed in traditionally “non-excitable” cell types, including lymphocytes, glia, fibroblasts and metastatic cancer cells of epithelial origin. Both the diversity and modulation of VGSC expression are far more complex than was initially apparent. There are at least 10 different genes that encode the α-subunits of VGSCs. Since VGSCs can contribute to a range of human disease conditions, it is important to understand both the control and consequences of VGSC functioning and how these aspects may be altered under pathophysiological conditions. Such mechanisms can be at the transcriptional, pre-translational or post-translational levels. This article reviews recent literature that has contributed to our understanding of how individual VGSC subtypes can generate their unique physiological signatures within different cell types. We also highlight emerging areas of interest, in particular, the finding of multiple expression of individual VGSC subtypes within single cells, the generation of alternative splice variants and the increasingly complex set of mechanisms of plasticity through which individual VGSC subtypes may be subtly controlled, including intracellular trafficking of VGSC protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3A–F

Similar content being viewed by others

References

  • Abriel H, Kamynina E, Horisberger JD, Staub O (2000) Regulation of the cardiac voltage-gated Na+ channel (H1) by the ubiquitin-protein ligase Nedd4. FEBS Lett 466:377–380

    Article  CAS  PubMed  Google Scholar 

  • Akopian AN, Souslova V, Sivilotti L, Wood JN (1997) Structure and distribution of a broadly expressed atypical sodium channel. FEBS Lett 400:183–187

    Article  CAS  PubMed  Google Scholar 

  • Akopian AN, Okuse K, Souslova V, England S, Ogata N, Wood JN (1999a) Trans-splicing of a voltage-gated sodium channel is regulated by nerve growth factor. FEBS Lett 445:177–182

    Article  CAS  PubMed  Google Scholar 

  • Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ, McMahon SB, Boyce S, Hill R, Stanfa LC, Dickenson AH, Wood JN (1999b) The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci 2:541–548

    Article  CAS  PubMed  Google Scholar 

  • Andres ME, Burger C, Peral-Rubio MJ, Battaglioli E, Anderson ME, Grimes J, Dallman J, Ballas N, Mandel G (1999) CoREST: a functional corepressor required for regulation of neural-specific gene expression. Proc Natl Acad Sci USA 96:9873–9878

    Article  CAS  PubMed  Google Scholar 

  • Auld VJ, Goldin AL, Krafte DS, Catterall WA, Lester HA, Davidson N, Dunn RJ (1990) A neutral amino-acid change in segment-IIS4 dramatically alters the gating properties of the voltage-dependent sodium-channel. Proc Natl Acad Sci USA 87:323–327

    CAS  PubMed  Google Scholar 

  • Avila G, Monjaraz E, Espinosa JL, Cota G (2003) Downregulation of voltage-gated sodium channels by dexamethasone in clonal rat pituitary cells. Neurosci Lett 339:21–24

    Article  CAS  PubMed  Google Scholar 

  • Baker MD, Chandra SY, Ding YN, Waxman SG, Wood JN (2003) GTP-induced tetrodotoxin-resistant Na+ current regulates excitability in mouse and rat small diameter sensory neurones. J Physiol (London) 548:373–382

    Google Scholar 

  • Bakhramov A, Boriskin YS, Booth JC, Bolton TB (1995) Activation and deactivation of membrane currents in human fibroblasts following infection with human cytomegalovirus. Biochim Biophys Acta 1265:143–151

    Article  CAS  PubMed  Google Scholar 

  • Belcher SM, Zerillo CA, Levenson R, Ritchie JM, Howe JR (1995) Cloning of a sodium-channel alpha-subunit from rabbit schwann-cells. Proc Natl Acad Sci USA 92:11034–11038

    CAS  PubMed  Google Scholar 

  • Bennett ES (2001) Channel cytoplasmic loops alter voltage-dependent sodium channel activation in an isoform-specific manner. J Physiol (London) 535:371–381

    Google Scholar 

  • Bennett ES (2002) Isoform-specific effects of sialic acid on voltage-dependent Na+ channel gating: functional sialic acids are localized to the S5–S6 loop of domain I. J Physiol (London) 538:675–690

    Google Scholar 

  • Bennett E, Urcan MS, Tinkle SS, Koszowski AG, Levinson SR (1997) Contribution of sialic acid to the voltage dependence of sodium channel gating: a possible electrostatic mechanism. J Gen Physiol 109:327–343

    Article  CAS  PubMed  Google Scholar 

  • Bevan S, Storey N (2002) Modulation of sodium channels in primary afferent neurons. Novart Fdn Symp 241:144–158

    CAS  Google Scholar 

  • Black JA, Waxman SG (1996) Sodium channel expression: a dynamic process in neurons and non-neuronal cells. Dev Neurosci 18:139–152

    CAS  PubMed  Google Scholar 

  • Black JA, DibHajj S, McNabola K, Jeste S, Rizzo MA, Kocsis JD, Waxman SG (1996) Spinal sensory neurons express multiple sodium channel alpha-subunit mRNAs. Mol Brain Res 43:117–131

    Article  CAS  PubMed  Google Scholar 

  • Black JA, Langworthy K, Hinson AW, DibHajj S, Waxman SG (1997) NGF has opposing actions on sodium channel III and SNS gene expressionin spinal sensory neurons. NeuroReport 8:2331–2335

    CAS  PubMed  Google Scholar 

  • Black JA, Cummins TR, Plumpton C, Chen YH, Hormuzdiar W, Clare JJ, Waxman SG (1999) Upregulation of a silent sodium channel after peripheral, but not central, nerve injury in DRG neurons. J Neurophysiol 82:2776–2785

    CAS  PubMed  Google Scholar 

  • Blumenthal KM, Seibert AL (2003) Voltage-gated sodium channel toxins: poisons, probes, and future promise. Cell Biochem Biophys 38:215–237

    Article  CAS  PubMed  Google Scholar 

  • Boiko T, Rasband MN, Levinson SR, Caldwell JH, Mandel G, Trimmer JS, Matthews G (2001) Compact myelin dictates the differential targeting of two sodium channel isoforms in the same axon. Neuron 30:91–104

    CAS  PubMed  Google Scholar 

  • Boiko T, Van Wart A, Caldwell JH, Levinson SR, Trimmer JS, Matthews G (2003) Functional specialization of the axon initial segment by isoform-specific sodium channel targeting. J Neurosci 23:2306–2313

    CAS  PubMed  Google Scholar 

  • Bouzidi M, Tricaud N, Giraud P, Kordeli E, Caillol G, Deleuze C, Couraud F, Alcaraz G (2002) Interaction of the Nav1.2a subunit of the voltage-dependent sodium channel with nodal ankyrin(G): in vitro mapping of the interacting domains and association in synaptosomes. J Biol Chem 277:28996–29004

    Article  CAS  PubMed  Google Scholar 

  • Burgess DL, Kohrman DC, Galt J, Plummer NW, Jones JM, Spear B, Meisler MH (1995) Mutation of a new sodium-channel gene, scn8a, in the mouse mutant motor end-plate disease. Nat Genet 10:461–465

    CAS  PubMed  Google Scholar 

  • Caldwell JH (2000) Clustering of sodium channels at the neuromuscular junction. Microsc Res Tech 49:84–89

    Article  CAS  PubMed  Google Scholar 

  • Cantrell AR, Catterall WA (2001) Neuromodulation of Na+ channels: an unexpected form of cellular plasticity. Nat Rev Neurosci 2:397–407

    Article  CAS  PubMed  Google Scholar 

  • Cantrell AR, Tibbs VC, Westenbroek RE, Scheuer T, Catterall WA (1999) Dopaminergic modulation of voltage-gated Na+ current in rat hippocampal neurons requires anchoring of cAMP-dependent protein kinase. J Neurosci 19:RC21

    CAS  PubMed  Google Scholar 

  • Cantrell AR, Tibbs VC, Yu FH, Murphy BJ, Sharp EM, Qu YS, Catterall WA, Scheuer T (2002) Molecular mechanism of convergent regulation of brain Na+ channels by protein kinase C and protein kinase A anchored to AKAP-15. Mol Cell Neurosci 21:63–80

    Article  CAS  PubMed  Google Scholar 

  • Carlier E, Dargent B, De Waard M, Couraud F (2000) Na+ channel regulation by calmodulin kinase II in rat cerebellar granule cells. Biochem Biophys Res Commun 274:394–399

    Article  CAS  PubMed  Google Scholar 

  • Carr DB, Day M, Cantrell AR, Held J, Scheuer T, Catterall WA, Surmeier DJ (2003) Transmitter modulation of slow, activity-dependent alterations in sodium channel availability endows neurons with a novel form of cellular plasticity. Neuron 39:793–806

    CAS  PubMed  Google Scholar 

  • Castillo C, Thomhill WB, Zhu J, Recio-Pinto E (2003) The permeation and activation properties of brain sodium channels change during development. Dev Brain Res 144:99–106

    Article  CAS  Google Scholar 

  • Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26:13–25

    PubMed  Google Scholar 

  • Catterall WA, Goldin AL, Waxman SG (2003) International Union of Pharmacology. XXXIX. Compendium of voltage-gated ion channels: sodium channels. Pharmacol Rev 55:575–578

    Article  CAS  PubMed  Google Scholar 

  • Cestèle S, Catterall WA (2000) Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 82:883–892

    Article  PubMed  Google Scholar 

  • Chen CL, Bharucha V, Chen YA, Westenbroek RE, Brown A, Malhotra JD, Jones D, Avery C, Gillespie PJ, Kazen-Gillespie KA, Kazarinova-Noyes K, Shrager P, Saunders TL, Macdonald RL, Ransom BR, Scheuer T, Catterall WA, Isom LL (2002) Reduced sodium channel density, altered voltage dependence of inactivation, and increased susceptibility to seizures in mice lacking sodium channel beta 2-subunits. Proc Natl Acad Sci USA 99:17072–17077

    Article  CAS  PubMed  Google Scholar 

  • Chiu SY, Schrager P, Ritchie JM (1984) Neuronal-type Na+ and K+ channels in rabbit cultured Schwann cells. Nature 311:156–157

    CAS  PubMed  Google Scholar 

  • Chong JHA, Tapiaramirez J, Kim S, Toledoaral JJ, Zheng YC, Boutros MC, Altshuller YM, Frohman MA, Kraner SD, Mandel G (1995) REST: a mammalian silencer protein that restricts sodium-channel gene-expression to neurons. Cell 80:949–957

    CAS  PubMed  Google Scholar 

  • Cummins TR, Howe JR, Waxman SG (1998) Slow closed-state inactivation: a novel mechanism underlying ramp currents in cells expressing the hNE/PN1 sodium channel. J Neurosci 18:9607–9619

    CAS  PubMed  Google Scholar 

  • Cummins TR, Dib-Hajj SD, Black JA, Akopian AN, Wood JN, Waxman SG (1999) A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J Neurosci 19:RC43

    CAS  PubMed  Google Scholar 

  • Cummins TR, Black JA, Dib-Hajj SD, Waxman SG (2000). Glial-derived neurotrophic factor upregulates expression of functional SNS and NaN sodium channels and their currents in axotomized dorsal root ganglion neurons. J Neurosci 20:8754–8761

    CAS  PubMed  Google Scholar 

  • Cummins TR, Aglieco F, Dib-Hajj SD (2002) Critical molecular determinants of voltage-gated sodium channel sensitivity to mu-conotoxins GIIIA/B. Mol Pharmacol 61:1192–1201

    Article  CAS  PubMed  Google Scholar 

  • Dechraoui MYB, Ramsdell JS (2003) Type B brevetoxins show tissue selectivity for voltage-gated sodium channels: comparison of brain, skeletal muscle and cardiac sodium channels. Toxicon 41:919–927

    Article  PubMed  Google Scholar 

  • DeCoursey TE, Chandy KG, Gupta S, Cahalan MD (1985) Voltage-dependent ion channels in lymphocytes-T. J Neuroimmunol 10:71–95

    Article  CAS  PubMed  Google Scholar 

  • De Leon L, Ragsdale DS (2003) State-dependent access to the batrachotoxin receptor on the sodium channel. NeuroReport 14:1353–1356

    PubMed  Google Scholar 

  • DelPrincipe F, Egger M, Niggli E (2000) L-type Ca2+ current as the predominant pathway of Ca2+ entry during I-Na activation in beta-stimulated cardiac myocytes. J Physiol (London) 527:455–466

    Google Scholar 

  • Deschenes I, Trottier E, Chahine M (2001) Implication of the C-terminal region of the alpha-subunit of voltage-gated sodium channels in fast inactivation. J Membr Biol 183:103–114

    Article  CAS  PubMed  Google Scholar 

  • Dib-Hajj S, Black JA, Cummins TR, Waxman SG (2002a) NaN/Na(v)1.9: a sodium channel with unique properties. Trends Neurosci 25:253–259

    Article  CAS  PubMed  Google Scholar 

  • Dib-Hajj SD, Tyrrell L, Waxman SG (2002b) Structure of the sodium channel gene SCN11A: evidence for intron-to-exon conversion model and implications for gene evolution. Mol Neurobiol 26:235–250

    Article  CAS  PubMed  Google Scholar 

  • Dietrich PS, McGivern JG, Delgado SG, Koch BD, Eglen RM, Hunter JC, Sangameswaran L (1998) Functional analysis of a voltage-gated sodium channel and its splice variant from rat dorsal root ganglia. J Neurochem 70:2262–2272

    CAS  PubMed  Google Scholar 

  • Diss JKJ, Archer SN, Hirano J, Fraser SP, Djamgoz MBA (2001) Expression profiles of voltage-gated Na+ channel α-subunit genes in rat and human prostate cancer cell lines. Prostate 48:1–14

    Article  CAS  PubMed  Google Scholar 

  • Djamgoz MBA, Mycielska M, Madeja Z, Fraser SP, Korohoda W (2001) Directional movement of rat prostatic cancer cells in direct-current electric field: involvement of voltage-gated Na+ channel activity. J Cell Sci 114:2697–2705

    CAS  PubMed  Google Scholar 

  • Fjell J, DibHajj S, Fried K, Black JA, Waxman SG (1997) Differential expression of sodium channel genes in retinal ganglion cells. Mol Brain Res 50:197–204

    Article  CAS  PubMed  Google Scholar 

  • Fraser SP, Ding Y, Liu A, Foster CS, Djamgoz MBA (1999) Tetrodotoxin suppresses morphological enhancement of the metastatic MAT-LyLu rat prostate cancer cell line. Cell Tissue Res 295:505–512

    Article  CAS  PubMed  Google Scholar 

  • Fraser SP, Diss JKJ, Mycielska ME, Coombes RC, Djamgoz MBA (2002) Voltage-gated sodium channel expression in human breast cancer cells: possible functional role in metastasis. Breast Cancer Res Trends 76:S142

    Google Scholar 

  • Fraser SP, Salvador V, Manning E, Mizal J, Altun S, Reza M, Berridge RJ, Djamgoz MBA (2003) Contribution of functional voltage-gated Na+ channel expression to cell behaviours involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. J Cell Physiol 195:479–487

    Article  CAS  PubMed  Google Scholar 

  • Garrido JJ, Giraud P, Carlier E, Fernandes F, Moussif A, Fache MP, Debanne D, Dargent B (2003) A targeting motif involved in sodium channel clustering at the axonal initial segment. Science 300:2091–2094

    Article  CAS  PubMed  Google Scholar 

  • Gastaldi M, Bartolomei F, Massacrier A, Planells R, Robaglia-Schlupp A, Cau P (1997) Increase in mRNAs encoding neonatal II and III sodium channel alpha-isoforms during kainate-induced seizures in adult rat hippocampus. Mol Brain Res 44:179–90

    Article  CAS  PubMed  Google Scholar 

  • Gautron S, Gruszczynski C, Koulakoff A, Poiraud E, Lopez S, Cambier H, Dos Santos G, Berwald-Netter Y (2001) Genetic and epigenetic control of the Na-G ion channel expression in glia. Glia 33:230–240

    Article  CAS  PubMed  Google Scholar 

  • Gee SH, Madhavan R, Levinson SR, Caldwell JH, Sealock R, Froehner SC (1998) Interaction of muscle and brain sodium channels with multiple members of the syntrophin family of dystrophin-associated proteins. J Neurosci 18:128–137

    CAS  PubMed  Google Scholar 

  • Gellens ME, George AL, Chen LQ, Chahine M, Horn R, Barchi RL, Kallen RG (1992) Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium-channel. Proc Natl Acad Sci USA 89:554–558

    CAS  PubMed  Google Scholar 

  • Gold MS, Weinreich D, Kim CS, Wang RZ, Treanor J, Porreca F, Lai J (2003) Redistribution of Na(V)1.8 in uninjured axons enables neuropathic pain. J Neurosci 23:158–166

    CAS  PubMed  Google Scholar 

  • Goldin AL (2001) Resurgence of sodium channel research. Annu Rev Physiol 63:871–894

    Article  CAS  PubMed  Google Scholar 

  • Goldin AL (2002) Evolution of voltage-gated Na+ channels. J Exp Biol 205:575–584

    CAS  PubMed  Google Scholar 

  • Gordienko DV, Tsukahara H (1994) Tetrodotoxin-blockable depolarization-activated Na+ currents in a cultured endothelial-cell line derived from rat interlobar artery and human umbilical vein. Pflugers Arch 428:91–93

    CAS  PubMed  Google Scholar 

  • Grimes JA, Djamgoz MBA (1998) Electrophysiological characterization of voltage-gated Na+ current expressed in the highly metastatic Mat-LyLu cell line of rat prostate cancer. J Cell Physiol 175:50–58

    Article  CAS  PubMed  Google Scholar 

  • Grimes JA, Fraser SP, Stephens GJ, Downing JEG, Laniado ME, Foster CS, Abel PD, Djamgoz MBA (1995) Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: contribution to invasiveness in vitro. FEBS Lett 369:290–294

    Article  CAS  PubMed  Google Scholar 

  • Grimes JA, Nielsen SJ, Battaglioli E, Miska EA, Speh JC, Berry DL, Atouf F, Holdener BC, Mandel G, Kouzarides T (2000) The co-repressor mSin3A is a functional component of the REST-CoREST repressor complex. J Biol Chem 275:9461–9467

    Article  CAS  PubMed  Google Scholar 

  • Gustafson TA, Clevinger EC, Oneill TJ, Yarowsky PJ, Krueger BK (1993) Mutually exclusive exon splicing of type-III brain sodium channel-alpha subunit RNA generates developmentally-regulated isoforms in rat-brain. J Biol Chem 268:18648–18653

    CAS  PubMed  Google Scholar 

  • Herzog RI, Liu CJ, Waxman SG, Cummins TR (2003) Calmodulin binds to the C terminus of sodium channels Na(v)1.4 and Na(v)1.6 and differentially modulates their functional properties. J Neurosci 23:8261–8270

    CAS  PubMed  Google Scholar 

  • Hilber K, Sandtner W, Kudlacek O, Glaaser IW, Weisz E, Kyle JW, French RJ, Fozzard HA, Dudley SC, Todt H (2001) The selectivity filter of the voltage-gated sodium channel is involved in channel activation. J Biol Chem 276:27831–27839

    Article  CAS  PubMed  Google Scholar 

  • Hille B (1992) Ionic channels of excitable membranes, 2nd edn. Sinauer, Sunderland, Mass., USA

  • Isom LL (2002) β subunits: players in neuronal hyperexcitability? Novart Fdn Symp 241:124–143

    CAS  Google Scholar 

  • Isom LL, Dejongh KS, Patton DE, Reber BFX, Offord J, Charbonneau H, Walsh K, Goldin AL, Catterall WA (1992) Primary structure and functional expression of the beta-1-subunit of the rat-brain sodium-channel. Science 256:839–842

    CAS  PubMed  Google Scholar 

  • Isom LL, Ragsdale DS, Dejongh KS, Westenbroek RE, Reber BFX, Scheuer T, Catterall WA (1995) Structure and function of the beta-2 subunit of brain sodium-channels, a transmembrane glycoprotein with a CAM motif. Cell 83:433–442

    CAS  PubMed  Google Scholar 

  • Iwahashi Y, Furuyama T, Inagaki S, Morita Y, Takagi H (1994) Distinct regulation of sodium-channel type-I, type-II and type-III following nerve transection. Mol Brain Res 22:341–345

    Article  CAS  PubMed  Google Scholar 

  • Jenkins SM, Bennett V (2001) Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments. J Cell Biol 155:739–745

    Article  CAS  PubMed  Google Scholar 

  • Jeong SY, Goto J, Hashida H, Suzuki T, Ogata K, Masuda N, Hirai M, Isahara K, Uchiyama Y, Kanazawa I (2000) Identification of a novel human voltage-gated sodium channel alpha subunit gene, SCN12A. Biochem Biophys Res Commun 267:262–270

    Article  CAS  PubMed  Google Scholar 

  • Kazarinova-Noyes K, Malhotra JD, McEwen DP, Mattei LN, Berglund EO, Ranscht B, Levinson SR, Schachner M, Shrager P, Isom LL, Xiao ZC (2001) Contactin associates with Na+ channels and increases their functional expression. J Neurosci 21:7517–7525

    CAS  PubMed  Google Scholar 

  • Kazen-Gillespie KA, Ragsdale DS, D’Andrea MR, Mattei LN, Rogers KE, Isom LL (2000) Cloning, localization, and functional expression of sodium channel beta 1A subunits. J Biol Chem 275:1079–1088

    Article  CAS  PubMed  Google Scholar 

  • Klugbauer N, Lacinova L, Flockerzi V, Hofmann F (1995) Structure and functional expression of a new member of the tetrodotoxin-sensitive voltage-activated sodium-channel family from human neuroendocrine cells. EMBO J 14:1084–1090

    CAS  PubMed  Google Scholar 

  • Kobayashi H, Shiraishi S, Yanagita T, Yokoo H, Yamamoto R, Minami S, Saitoh T, Wada A (2002) Regulation of voltage-dependent sodium channel expression in adrenal chromaffin cells: involvement of multiple calcium signaling pathways. Ann NY Acad Sci 971:127–134

    CAS  PubMed  Google Scholar 

  • Komada M, Soriano P (2002) Beta IV-spectrin regulates sodium channel clustering through ankyrin-G at axon initial segments and nodes of Ranvier. J Cell Biol 156:337–348

    Article  CAS  PubMed  Google Scholar 

  • Kondratiev A, Hahin R, Tomaselli GF (2003) Isoform-specific effects of a novel BmK 11(2) peptide toxin on Na channels. Toxicon 41:269–276

    Article  CAS  PubMed  Google Scholar 

  • Korsgaard MPG, Christophersen P, Ahring PK, Olesen SP (2001) Identification of a novel voltage-gated Na+ channel rNa(v)1.5a in the rat hippocampal progenitor stem cell line HiB5. Pflugers Arch 443:18–30

    Article  PubMed  Google Scholar 

  • Lai J, Hunter JC, Porreca F (2003) The role of voltage-gated sodium channels in neuropathic pain. Curr Opin Neurobiol 13:291–297

    Article  CAS  PubMed  Google Scholar 

  • Laniado ME, Lalani E-N, Fraser SP, Grimes JA, Bhangal G, Djamgoz MBA, Abel PD (1997) Expression and functional analysis of voltage-activated Na+ channels in human prostate cancer cell lines and their contribution to invasiveness in vitro. Am J Pathol 150:1213–1221

    CAS  PubMed  Google Scholar 

  • Lemaillet G, Walker B, Lambert S (2003) Identification of a conserved ankyrin-binding motif in the family of sodium channel α subunits. J Biol Chem 278:27333–27339

    Article  CAS  PubMed  Google Scholar 

  • Liu CJ, Dib-Hajj SD, Black JA, Greenwood J, Lian Z, Waxman SG (2001) Direct interaction with contactin targets voltage-gated sodium channel Na(v)1.9/NaN to the cell membrane. J Biol Chem 276:46553–46561

    Article  CAS  PubMed  Google Scholar 

  • Liu CJ, Dib-Hajj SD, Renganathan M, Cummins TR, Waxman SG (2003) Modulation of the cardiac sodium channel Na(v)1.5 by fibroblast growth factor homologous factor 1B. J Biol Chem 278:1029–1036

    Article  CAS  PubMed  Google Scholar 

  • Lu CM, Brown GB (1998) Isolation of a human-brain sodium-channel gene encoding two isoforms of the subtype III alpha-subunit. J Mol Neurosci 10:67–70

    CAS  PubMed  Google Scholar 

  • Lustig M, Zanazzi G, Sakurai T, Blanco C, Levinson SR, Lambert S, Grumet M, Salzer JL (2001) Nr-CAM and neurofascin interactions regulate ankyrin G and sodium channel clustering at the node of Ranvier. Curr Biol 11:1864–1869

    Article  CAS  PubMed  Google Scholar 

  • Ma JY, Catterall WA, Scheuer T (1997) Persistent sodium currents through brain sodium channels induced by G protein beta gamma subunits. Neuron 19:443–452

    CAS  PubMed  Google Scholar 

  • MacFarlane SN, Sontheimer H (1998) Spinal cord astrocytes display a switch from TTX-sensitive to TTX-resistant sodium currents after injury-induced gliosis in vitro. J Neurophysiol. 79:2222–2226

    Google Scholar 

  • Magee J, Hoffman D, Colbert C, Johnston D (1998) Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. Annu Rev Physiol 60:327–346

    Article  CAS  PubMed  Google Scholar 

  • Maier SKG, Westenbroek RE, Yamanushi TT, Dobrzynski H, Boyett MR, Catterall WA, Scheuer T (2003) An unexpected requirement for brain-type sodium channels for control of heart rate in the mouse sinoatrial node. Proc Natl Acad Sci USA 100:3507–3512

    Article  CAS  PubMed  Google Scholar 

  • Makita N, Bennett PB, George AL (1996) Molecular determinants of beta(1) subunit-induced gating modulation in voltage-dependent Na+ channels. J Neurosci 16:7117–7127

    CAS  PubMed  Google Scholar 

  • Malhotra JD, Kazen-Gillespie K, Hortsch M, Isom LL (2000) Sodium channel beta subunits mediate homophilic cell adhesion and recruit ankyrin to points of cell-cell contact. J Biol Chem 275:11383–11388

    Article  CAS  PubMed  Google Scholar 

  • Malhotra JD, Koopmann MC, Kazen-Gillespie KA, Fettman N, Hortsch M, Isom LL (2002) Structural requirements for interaction of sodium channel beta 1 subunits with ankyrin. J Biol Chem 277:26681–26688

    Article  CAS  PubMed  Google Scholar 

  • Malik-Hall M, Poon WYL, Baker MD, Wood JN, Okuse K (2003) Sensory neuron proteins interact with the intracellular domains of sodium channel Na(v)1.8. Mol Brain Res 110:298–304

    Article  CAS  PubMed  Google Scholar 

  • Maltsev VA, Undrovinas AI (1997) Cytoskeleton modulates coupling between availability and activation of cardiac sodium channel. Am J Physiol 273:H1832–H1840

    CAS  PubMed  Google Scholar 

  • Marban E, Yamagishi T, Tomaselli GF (1998) Structure and function of voltage-gated sodium channels. J Physiol (London) 508:647–657

    Google Scholar 

  • Meadows L, Malhotra JD, Stetzer A, Isom LL, Ragsdale DS (2001) The intracellular segment of the sodium channel beta 1 subunit is required for its efficient association with the channel alpha subunit. J Neurochem 76:1871–1878

    Article  CAS  PubMed  Google Scholar 

  • Meadows LS, Malhotra J, Loukas A, Thyagarajan V, Kazen-Gillespie KA, Koopman MC, Kriegler S, Isom LL, Ragsdale DS (2002) Functional and biochemical analysis of a sodium channel beta 1 subunit mutation responsible for generalized epilepsy with febrile seizures plus type 1. J Neurosci 22:10699–10709

    CAS  PubMed  Google Scholar 

  • Meisler MH, Kearney JA, Sprunger LK, MacDonald BT, Buchner DA, Escayg A (2002) Mutations of voltage-gated sodium channels in movement disorders and epilepsy. Novart Fdn Symp 241:72–86

    CAS  Google Scholar 

  • Momparler RL (2003) Cancer epigenetics. Oncogene 22:6479–6483

    Article  CAS  PubMed  Google Scholar 

  • Monk M, Holding C (2001) Human embryonic genes re-expressed in cancer cells. Oncogene 20:8085–8091

    Article  CAS  PubMed  Google Scholar 

  • Morgan K, Stevens EB, Shah B, Cox PJ, Dixon AK, Lee K, Pinnock RD, Hughes J, Richardson PJ, Mizuguchi K, Jackson AP (2000) Beta 3: an additional auxiliary subunit of the voltage-sensitive sodium channel that modulates channel gating with distinct kinetics. Proc Natl Acad Sci USA 97:2308–2313

    Article  CAS  PubMed  Google Scholar 

  • Mori M, Konno T, Ozawa T, Murata M, Imoto K, Nagayama K (2000) Novel interaction of the voltage-dependent sodium channel (VDSC) with calmodulin: does VDSC acquire calmodulin-mediated Ca2+-sensitivity? Biochemistry 39:1316–1323

    Article  CAS  PubMed  Google Scholar 

  • Mori M, Konno T, Morii T, Nagayama K, Imoto K (2003) Regulatory interaction of sodium channel IQ-motif with calmodulin C-terminal lobe. Biochem Biophys Res Commun 307:290–296

    Article  CAS  PubMed  Google Scholar 

  • Murphy BJ, Rogers J, Perdichizzi AP, Colvin AA, Catterall WA (1996) cAMP-dependent phosphorylation of two sites in the alpha subunit of the cardiac sodium channel. J Biol Chem 271:28837–28843

    CAS  PubMed  Google Scholar 

  • Murray KT, Hu NN, Daw JR, Shin HG, Watson MT, Mashburn AB, George AL (1997) Functional effects of protein kinase C activation on the human cardiac Na+ channel. Circ Res 80:370–376

    CAS  PubMed  Google Scholar 

  • Mycielska ME, Fraser SP, Szatkowski M, Djamgoz MBA (2003) Contribution of functional voltage-gated Na+ channel expression to cell behaviours involved in the metastatic cascade in rat prostate cancer: II. Secretory membrane activity. J Cell Physiol 195:461–469

    Article  CAS  PubMed  Google Scholar 

  • Oh YS, Waxman SG (1994). The beta-1 subunit messenger-RNA of the rat-brain Na+ channel is expressed in glial-cells. Proc Natl Acad Sci USA 91:9985–9989

    CAS  PubMed  Google Scholar 

  • Oh Y, Waxman SG (1998) Novel splice variants of the voltage-sensitive sodium channel alpha subunit. NeuroReport 9:1267–1272

    CAS  PubMed  Google Scholar 

  • Piacentino V, Gaughan JP, Houser SR (2002) L-type Ca2+ currents overlapping threshold Na+ currents: could they be responsible for the “slip-mode” phenomenon in cardiac myocytes? Circ Res 90:435–442

    Article  CAS  PubMed  Google Scholar 

  • Plummer NW, Meisler MH (1999) Evolution and diversity of mammalian sodium channel genes. Genomics 57:323–331

    Article  CAS  PubMed  Google Scholar 

  • Plummer NW, McBurney MW, Meisler MH: (1997) Alternative splicing of the sodium channel SCN8A predicts a truncated two-domain protein in fetal brain and non-neuronal cells. J Biol Chem 272:24008–24015

    Article  CAS  PubMed  Google Scholar 

  • Plummer NW, Galt J, Jones JM, Burgess DL, Sprunger LK, Kohrman DC, Meisler MH (1998) Exon organization, coding sequence, physical mapping, and polymorphic intragenic markers for the human neuronal sodium channel gene SCN8A. Genomics 54:287–296

    Article  CAS  PubMed  Google Scholar 

  • Qu YS, Rogers JC, Chen SF, McCormick KA, Scheuer T, Catterall WA (1999) Functional roles of the extracellular segments of the sodium channel alpha subunit in voltage-dependent gating and modulation by beta 1 subunits. J Biol Chem 274:32647–32654

    Article  CAS  PubMed  Google Scholar 

  • Ratcliffe CF, Qu YS, McCormick KA, Tibbs VC, Dixon JE, Scheuer T, Catterall WA (2000) A sodium channel signaling complex: modulation by associated receptor protein tyrosine phosphatase β. Nat Neurosci 3:437–444

    Article  CAS  PubMed  Google Scholar 

  • Ratcliffe CF, Westenbroek RE, Curtis R, Catterall WA (2001) Sodium channel beta 1 and beta 3 subunits associate with neurofascin through their extracellular immunoglobulin-like domain. J Cell Biol 154:427–434

    Article  CAS  PubMed  Google Scholar 

  • Ren DJ, Navarro B, Xu HX, Yue LX, Shi Q, Clapham DE (2001) A prokaryotic voltage-gated sodium channel. Science 294:2372–2375

    Article  CAS  PubMed  Google Scholar 

  • Roger S, Besson P, Le Guennec JY (2003) Involvement of a novel fast inward sodium current in the invasion capacity of a breast cancer cell line. Biochim Biophys Acta 1616:107–111

    Article  CAS  PubMed  Google Scholar 

  • Safo P, Rosenbaum T, Shcherbatko A, Choi DY, Han E, Toledo-Aral JJ, Olivera BM, Brehm P, Mandel G (2000) Distinction among neuronal subtypes of voltage-activated sodium channels by mu-conotoxin PIIIA. J Neurosci 20:76–80

    CAS  PubMed  Google Scholar 

  • Sampo B, Tricaud N, Leveque C, Seagar M, Courand F, Dargent B (2000) Direct interaction between synaptotagmin and the intracellular loop I-II of neuronal voltage-sensitive sodium channels. Proc Natl Acad Sci USA 97:3666–3671

    Article  CAS  PubMed  Google Scholar 

  • Sangameswaran L, Fish LM, Koch BD, Rabert DK, Delgado SG, Ilnicka M, Jakeman LB, Novakovic S, Wong K, Sze P, Tzoumaka E, Stewart GR, Herman RC, Chan H, Eglen RM, Hunter JC (1997) Novel tetrodotoxin-sensitive, voltage-gated sodium channel expressed in rat and human dorsal root ganglia. J Biol Chem 272:14805–14809

    Article  CAS  PubMed  Google Scholar 

  • Santana LF, Gomez AM, Lederer WJ (1998) Ca2+ flux through promiscuous cardiac Na+ channels: slip-mode conductance. Science 279:1027–1033

    CAS  PubMed  Google Scholar 

  • Sarao R, Gupta SK, Auld VJ, Dunn RJ (1991) Developmentally regulated alternative RNA splicing of rat-brain sodium-channel messenger-RNAs. Nucleic Acids Res 19:5673–5679

    CAS  PubMed  Google Scholar 

  • Sashihara S, Yanagihara N, Izumi F, Murai Y, Mita T (1994) Differential up-regulation of voltage-dependent Na+ channels induced by phenytoin in brains of genetically seizure-susceptible (e1) and control (ddy) mice. Neuroscience 62:803–811

    CAS  PubMed  Google Scholar 

  • Sashihara S, Tsuji S, Matsui T (1998) Oncogenes and signal transduction pathways involved in the regulation of Na+ channel expression. Crit Rev Oncogen 9:19–34

    CAS  Google Scholar 

  • Schade SD, Brown CB (2000) Identifying the promoter region of the human brain sodium channel subtype II gene (SCN2A). Mol Brain Res 81:187–190

    Article  CAS  PubMed  Google Scholar 

  • Schaller KL, Krzemien DM, Mckenna NM, Caldwell JH (1992) Alternatively spliced sodium-channel transcripts in brain and muscle. J Neurosci 12:1370–1381

    CAS  PubMed  Google Scholar 

  • Schaller KL, Krzemien DM, Yarowsky PJ, Krueger BK, Caldwell JH (1995) A novel, abundant sodium channel expressed in neurons and glia. J Neurosci 15:3231–3242

    CAS  PubMed  Google Scholar 

  • Schrey M, Codina C, Kraft R, Beetz C, Kalff R, Wolfl S, Patt S (2002) Molecular characterization of voltage-gated sodium channels in human gliomas. NeuroReport 13:2493–2498

    Article  CAS  PubMed  Google Scholar 

  • Sheng ZH, Zhang H, Barchi RL, Kallen RG (1994) Molecular-cloning and functional-analysis of the promoter of rat skeletal-muscle voltage-sensitive sodium-channel subtype-2 (rskm2): evidence for muscle-specific nuclear-protein binding to the core promoter. DNA Cell Biol 13:9–23

    CAS  PubMed  Google Scholar 

  • Shipston MJ (2001) Alternative splicing of potassium channels: a dynamic switch of cellular excitability. Trends Cell Biol 11: 353–358

    Article  CAS  PubMed  Google Scholar 

  • Smith RD, Goldin AL (1992) Protein kinase-A phosphorylation enhances sodium-channel currents in Xenopus oocytes. Am J Physiol 263:C660–C666

    CAS  PubMed  Google Scholar 

  • Smith RD, Goldin AL (1998) Functional analysis of the rat I sodium channel in Xenopus oocytes. J Neurosci 18:811–820

    CAS  PubMed  Google Scholar 

  • Sontheimer H, Black JA, Waxman SG (1996) Voltage-gated Na+ channels in glia: properties and possible functions. Trends Neurosci 19:325–331

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan J, Schachner M, Catterall WA (1998) Interaction of voltage-gated sodium channels with the extracellular matrix molecules tenascin-C and tenascin-R. Proc Natl Acad Sci USA 95:15753–15757

    CAS  PubMed  Google Scholar 

  • Stevens EB, Cox PJ, Shah BS, Dixon AK, Richardson PJ, Pinnock RD, Lee K (2001) Tissue distribution and functional expression of the human voltage-gated sodium channel beta 3 subunit. Pflugers Arch 441:481–488

    Article  CAS  PubMed  Google Scholar 

  • Tabb JS, Fanger GR, Wilson EM, Maue RA, Henderson LP (1994) Suppression of sodium-channel function in differentiating C2 muscle-cells stably overexpressing rat androgen receptors. J Neurosci 14:763–773

    CAS  PubMed  Google Scholar 

  • Tan JG, Liu ZQ, Nomura Y, Goldin AL, Dong K (2002) Alternative splicing of an insect sodium channel gene generates pharmacologically distinct sodium channels. J Neurosci 22:5300–5309

    CAS  PubMed  Google Scholar 

  • Tanaka M, Cummins TR, Ishikawa K, Black JA, Ibata Y, Waxman SG (1999) Molecular and functional remodeling of electrogenic membrane of hypothalamic neurons in response to changes in their input. Proc Natl Acad Sci USA 96:1088–1093

    Article  CAS  PubMed  Google Scholar 

  • ToledoAral JJ, Brehm P, Halegoua S, Mandel G (1995) A single pulse of nerve growth factor triggers long-term neuronal excitability through sodium channel gene expression. Neuron 14:607–611

    CAS  PubMed  Google Scholar 

  • ToledoAral JJ, Moss BL, He ZJ, Koszowski AG, Whisenand T, Levinson SR, Wolf JJ, SilosSantiago I, Halegoua S, Mandel G (1997) Identification of PN1, a predominant voltage-dependent sodium channel expressed principally in peripheral neurons. Proc Natl Acad Sci USA 94:1527–1532

    PubMed  Google Scholar 

  • Tyrrell L, Renganathan M, Dib-Hajj SD, Waxman SG (2001) Glycosylation alters steady-state inactivation of sodium channel Na(v)1.9/NaN in dorsal root ganglion neurons and is developmentally regulated. J Neurosci 21:9629–9637

    CAS  PubMed  Google Scholar 

  • Ufret-Vincenty CA, Baro DJ, Lederer WJ, Rockman HA, Quinones LE, Santana LF (2001) Role of sodium channel deglycosylation in the genesis of cardiac arrhythmias in heart failure. J Biol Chem 276:28197–28203

    Article  CAS  PubMed  Google Scholar 

  • Undrovinas AI, Shander GS, Makielski JC (1995) Cytoskeleton modulates gating of voltage-dependent sodium-channel in heart. Am J Physiol 269:H203–H214

    CAS  PubMed  Google Scholar 

  • Vijayaragavan K, O’Leary ME, Chahine M (2001) Gating properties of Na(v)1.7 and Na(v)1.8 peripheral nerve sodium channels. J Neurosci 21:7909–79

    CAS  PubMed  Google Scholar 

  • Vijayaragavan K, Boutjdir M, Chahine M (2004) Modulation of Nav1.7 and Nav1.8 peripheral nerve sodium channels by protein kinase A and protein kinase C. J Neurophysiol (in press)

  • Vilin YY, Fujimoto E, Ruben PC (2001) A single residue differentiates between human cardiac and skeletal muscle Na+ channel slow inactivation. Biophys J 80:2221–2230

    CAS  PubMed  Google Scholar 

  • Waxman SG (2000) The neuron as a dynamic electrogenic machine: modulation of sodium-channel expression as a basis for functional plasticity in neurons. Philos Trans R Soc London Ser B 355:199–213

    Article  CAS  Google Scholar 

  • Waxman SG (2001a) Transcriptional channelopathies: an emerging class of disorders. Nat Rev Neurosci. 2:652–659

    Google Scholar 

  • Waxman SG (2001b) Acquired channelopathies in nerve injury and MS. Neurology 56:1621–1627

    CAS  PubMed  Google Scholar 

  • Waxman SG, Dib-Hajj S, Cummins TR, Black JA (2000) Sodium channels and their genes: dynamic expression in the normal nervous system, dysregulation in disease states. Brain Res 886:5–14

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Black DL (2001) A CaMK IV responsive RNA element mediates depolarization-induced alternative splicing of ion channels. Nature 410:936–939

    Article  CAS  PubMed  Google Scholar 

  • Yanagita T, Kobayashi H, Uezono Y, Yokoo H, Sugano T, Saitoh T, Minami SI, Shiraishi S, Wada A (2003) Destabilization of Na(v)1.7 sodium channel alpha-subunit mRNA by constitutive phosphorylation of extracellular signal-regulated kinase: negative regulation of steady-state level of cell surface functional sodium channels in adrenal chromaffin cells. Mol Pharmacol 63:1125–1136

    Article  CAS  PubMed  Google Scholar 

  • Yu FH, Catterall WA (2003) Overview of the voltage-gated sodium channel family. Genome Biol 4:207 2003

    Google Scholar 

  • Yu FH, Westenbroek RE, Silos-Santiago I, McCormick KA, Lawson D, Ge P, Ferriera H, Lilly J, DiStefano PS, Catterall WA, Scheuer T, Curtis R (2003) Sodium channel β4, a new disulfide-linked auxiliary subunit with similarity to β2. J Neurosci 23:7577–7585

    CAS  PubMed  Google Scholar 

  • Zakon HH (1998) The effects of steroid hormones on electrical activity of excitable cells. Trends Neurosci 21:202–207

    CAS  PubMed  Google Scholar 

  • Zhang H, Maldonado MN, Barchi RL, Kallen RG (1999) Dual tandem promoter elements containing CCAC-Like motifs from the tetrodotoxin-resistant voltage-sensitive Na+ channel (rSkM2) gene can independently drive muscle-specific transcription in L6 cells. Gene Express 8:85–103

    CAS  Google Scholar 

  • Zhang XL, Peng XQ, Jing YL, Xie WR, Xie YK (2003) Sialic acid contributes to generation of ectopic spontaneous discharges in rats with neuropathic pain. Neurosci Lett 346:65–68

    Article  CAS  PubMed  Google Scholar 

  • Zhou JS, Yi JX, Hu NN, George AL, Murray KT (2000) Activation of protein kinase A modulates trafficking of the human cardiac sodium channel in Xenopus oocytes. Circ Res 87:33–38

    CAS  PubMed  Google Scholar 

  • Zimmer T, Benndorf K (2002) The human heart and rat brain IIA Na+ channels interact with different molecular regions of the β(1) subunit. J Gen Physiol 120:887–895

    Article  CAS  PubMed  Google Scholar 

  • Zimmer T, Biskup C, Dugarmaa S, Vogel F, Steinbis M, Bohle T, Wu YS, Dumaine R, Benndorf K (2002a) Functional expression of GFP-linked human heart sodium channel (hH1) and subcellular localization of the α subunit in HEK293 cells and dog cardiac myocytes. J Membr Biol 186:1–12

    Article  CAS  PubMed  Google Scholar 

  • Zimmer T, Biskup C, Bollensdorff C, Benndorf K (2002b) The β(1) subunit but not the β(2) subunit colocalizes with the human heart Na+ channel (hH1) already within the endoplasmic reticulum. J Membr Biol 186:13–21

    Article  CAS  PubMed  Google Scholar 

  • Zimmer T, Bollensdorff C, Haufe V, Birch-Hirschfeld E, Benndorf K (2002c) Mouse heart Na+ channels: primary structure and function of two isoforms and alternatively spliced variants. Am J Physiol 282:H1007–H1017

    CAS  Google Scholar 

  • Zur KB, Oh YS, Waxman SG, Black JA (1995) Differential up-regulation of sodium-channel alpha-subunit and beta-1-subunit messenger-RNAs in cultured embryonic DRG neurons following exposure to NGF. Mol Brain Res 30:97–105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of Cancer Research UK (CRUK), the Medical Research Council (MRC), The Wellcome Trust, and the Pro Cancer Research Fund (PCRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Fraser.

Additional information

Presented at the Biophysical Society Meeting on “Ion channels – from biophysics to disorders” held in May 2003, Rennes, France

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diss, J.K.J., Fraser, S.P. & Djamgoz, M.B.A. Voltage-gated Na+ channels: multiplicity of expression, plasticity, functional implications and pathophysiological aspects. Eur Biophys J 33, 180–193 (2004). https://doi.org/10.1007/s00249-004-0389-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-004-0389-0

Keywords

Navigation