Skip to main content
Log in

Live biospeckle laser imaging of root tissues

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Live imaging is now a central component for the study of plant developmental processes. Currently, most techniques are extremely constraining: they rely on the marking of specific cellular structures which generally apply to model species because they require genetic transformations. The biospeckle laser (BSL) system was evaluated as an instrument to measure biological activity in plant tissues. The system allows collecting biospeckle patterns from roots which are grown in gels. Laser illumination has been optimized to obtain the images without undesirable specular reflections from the glass tube. Data on two different plant species were obtained and the ability of three different methods to analyze the biospeckle patterns are presented. The results showed that the biospeckle could provide quantitative indicators of the molecular activity from roots which are grown in gel substrate in tissue culture. We also presented a particular experimental configuration and the optimal approach to analyze the images. This may serve as a basis to further works on live BSL in order to study root development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BSL:

Biospeckle laser system

GD:

Generalized differences

LASCA:

Laser speckle contrast analysis

LSV:

Laser speckle velocimetry

PIV:

Particle image velocimetry

References

  • Arizaga R, Trivi M, Rabal H (1999) Speckle time evolution characterization by the co-occurrence matrix analysis. Opt Laser Technol 31:163–169. doi:10.1016/S0030-3992(99)00033-X

    Article  Google Scholar 

  • Arizaga R et al (2002) Display of the local activity using dynamical speckle patterns. Opt Eng 41:287–294. doi:10.1117/1.1428739

    Article  Google Scholar 

  • Bazylev N, Formin N, Hirano T, Lavinskaya E, Mizukaki T, Nakagawa A, Rubnikovich S, Takayama K (2003) Quasi-real time bio-tissues monitoring using dynamic laser speckle photography. J Flow Visual 6:371–380

    Article  Google Scholar 

  • Beemster TSG, Baskin TI (1998) Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana1. Plant Physiol 116:1515–1526. doi:10.1104/pp.116.4.1515

    Article  PubMed  CAS  Google Scholar 

  • Bengough AG, Bransby MF, Hans J, McKenna SJ, Roberts TJ, Valentine TA (2006) Root responses to soil physical conditions; growth dynamics from field to cell. J Exp Bot 57:437–447. doi:10.1093/jxb/erj003

    Article  PubMed  CAS  Google Scholar 

  • Braga RA, DalFabbro IM, Borem FM, Rabelo G, Arizaga R, Rabal HJ, Trivi M (2003) Assessment of seed viability by laser speckle techniques. Biosyst Eng 86(3):287–294. doi:10.1016/j.biosystemseng.2003.08.005

    Article  Google Scholar 

  • Braga RA, Rabelo GF, Granato LR, Santos EF, Machado JC, Arizaga R, Rabal HJ, Trivi M (2005) Detection of fungi in beans by the laser biospeckle technique. Biosyst Eng 91:465–469. doi:10.1016/j.biosystemseng.2005.05.006

    Article  Google Scholar 

  • Braga RA, Horgan GW, Enes AM, Miron D, Rabelo GF, Barreto JB (2007) Biological feature isolation by wavelets in biospeckle laser images. Comp Electr Agric 58:123–132. doi:10.1016/j.compag.2007.03.009

    Article  Google Scholar 

  • Briers JD (1975) Wavelength dependence of intensity fluctuations in laser speckle patterns form biological specimens. Opt Commun 13:324–326. doi:10.1016/0030-4018(75)90111-X

    Article  Google Scholar 

  • Briers JD, Webster S (1996) Laser speckle contrast analyis (LASCA): a non scanning full field technique for monitoring capillary blood flow. J Biomed Opt 1:174–179. doi:10.1117/12.231359

    Article  Google Scholar 

  • Carvalho PHA, Barreto JB, Braga RA, Rabelo GF (2009) Motility parameters assessment of bovine frezen semen by biospeckle laser (BSL) system. Biosyst Eng 102:31–35. doi:10.1007/978-3-540-77578-2

    Article  Google Scholar 

  • Dumais J, Kwiatkowska D (2001) Analysis of surface growth in shoot apices. Plant J 31:229–241. doi:10.1046/j.1365-313X.2001.01350.x

    Article  Google Scholar 

  • Dupuy L, Mackenzie J, Rudge T, Haseloff J (2008) A system for modelling cell-cell interactions during plant morphogenesis. Ann Bot (Lond) 101:1255–1265. doi:10.1093/aob/mcm235

    Article  Google Scholar 

  • Formin NA (1998) Speckle photography for fluid mechanics measurements. Springer, Berlin, p 244

  • Fujii H, Asakura T (1985) Blood flow observed by time-varing laser speckle. Opt Lett 10(3):104–106. doi:10.1364/OL.10.000104

    Article  CAS  PubMed  Google Scholar 

  • Fujii H, Nohira K, Yamamoto Y, Ikawa H, Ohura T (1987) Evaluation of blood flow by laser speckle image sensing Part 1. Appl Opt 25:5321–5325

    Article  Google Scholar 

  • Haseloff J (2003) Old botanical techniques for new microscopes. BioTech 34:1174–1182

    CAS  Google Scholar 

  • Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the arabidopsis inflorescence meristem. Curr Biol 15:1899–1911. doi:10.1016/j.cub.2005.09.052

    Article  PubMed  CAS  Google Scholar 

  • Kurup S, Runions J, Köhler U, Laplaze L, Hodge S, Haseloff J (2005) Marking cell lineages in living tissues. Plant J 42:444–453. doi:10.1111/j.1365-313X.2005.02386.x

    Article  PubMed  CAS  Google Scholar 

  • Marcon M, Braga RA (2008) In: Rabal HJ, Braga RA (eds) Dynamic laser speckle and applications. Taylor & Francis, Boca Raton, p 304

  • Moreno N, Bougourd S, Haseloff J, Feijo JA (2006) Imaging plant cells. In: Pawley JB (ed) Handbook of confocal microscopy. Springer Science

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Pajuelo M, Baldwin G, Rabal H, Cap N, Arizaga R, Trivi M (2003) Bio-speckle assessment of bruising in fruits. Opt Lasers Eng 40:13–24. doi:10.1016/S0143-8166(02)00063-5

    Article  Google Scholar 

  • Passoni I, Dai Pra A, Rabal H, Trivi M, Arizaga R (2005) Dynamic speckle processing using wavelets based entropy. Opt Comm 246:219–228. doi:10.1016/j.optcom.2004.10.054

    Article  CAS  Google Scholar 

  • Pickering CJD, Halliwell NA (1984) Laser speckle photography and particle image velocimetry: photographic film noise. Appl Opt 23:2961–2969

    Article  PubMed  CAS  Google Scholar 

  • Pomarico JA, DiRocco HO, Alvarez L, Lanusse C, Mottier L, Saumell C, Arizaga R, Rabal H, Trivi M (2004) Speckle interferometry applied to phamacodynamic studies: evaluation of parasite motility. Eur Biophys J 33:694–699. doi:10.1007/s00249-004-0413-4

    Article  PubMed  CAS  Google Scholar 

  • Rabal HJ, Braga RA (2008) Dynamic laser speckle and applications, 1st edn. Taylor & Francis/CRC, Boca Raton, p 304

  • Rabelo GF, Braga RA Jr, Fabbro IMD, Arizaga R, Rabal HJ, Trivi MR (2005) Laser speckle techniques applied to study quality of fruits. Rev Bras Eng Agric Amb 9:570–575

    Google Scholar 

  • Rajan V, Varghese B, van Leeuwen TG, Steenbergen W (2006) Speckles in laser doppler perfusion imaging. Opt Lett 31(4):468–470. doi:10.1364/OL.31.000468

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt D, Pesce E-R, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2004) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260. doi:10.1038/nature02081

    Article  CAS  Google Scholar 

  • Sendra GH, Arizaga R, Rabal HJ, Trivi M (2005) Decomposition of biospeckle images in temporary spectral bands. Opt Lett 30(13):1641–1643. doi:10.1364/OL.30.001641

    Article  PubMed  CAS  Google Scholar 

  • Serov A, Lasser T (2005) High-speed laser doppler perfusion imaging using an integrating CMOS image sensor. Opt Exp 13(17):6416–6428. doi:10.1364/OPEX.13.006416

    Article  Google Scholar 

  • Sharpe J, Ahlgren U, Perry P, Hill B, Ross A, Hecksher-Sørensen J, Baldock R, Davidson D (2002) Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 5567:541–545. doi:10.1126/science.1068206

    Article  Google Scholar 

  • Truernit E, Bauby H, Dubreucq B, Grandjean O, Runions J, Barthélémy J, Palauquia J-C (2008) High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of phloem development and structure in Arabidopsis. On line publication doi:10.1105/tpc.107.056069

  • Wardell K, Jakobsson A, Nilsson GE (1993) Laser doppler perfusion imaging by dynamic light scattering. IEEE Trans Biomed Eng 40(4):309–316. doi:10.1109/10.222322

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Joenathan C, Khorana BM (1995) Temporal and spatial properties of the time-varying speckles of botanical specimens. Opt Eng 34:1487–1502. doi:10.1117/12.199878

    Article  Google Scholar 

  • Zhao Y, Wang J, Wu X, Williams FW, Schmidt RJ (1997) Point-wise and whole-field laser speckle intensity fluctuation measurements applied to botanical specimens. Opt Lasers Eng 28:443–456. doi:10.1016/S0143-8166(97)00056-0

    Article  Google Scholar 

Download references

Acknowledgments

This study was by the Federal University of Lavras, FAPEMIG, CNPq DT, Capes and by the Scottish Executive Environment and Rural Affairs Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto A. Braga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braga, R.A., Dupuy, L., Pasqual, M. et al. Live biospeckle laser imaging of root tissues. Eur Biophys J 38, 679–686 (2009). https://doi.org/10.1007/s00249-009-0426-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0426-0

Keywords

Navigation