Skip to main content

Advertisement

Log in

Critical stresses for cancer cell detachment in microchannels

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We present experiments involving cancer cells adhering to microchannels, subjected to increasing shear stresses (0.1–30 Pa). Morphological studies were carried out at different shear stresses. Cells exhibit spreading patterns similar to those observed under static conditions, as long as the shear stress is not too high. At critical wall shear stresses (around 2−5 Pa), cell-substrate contact area decreases until detachment at the larger stresses. Critical shear stresses are found to be lower for higher confinements (i.e. smaller cell height to channel height ratio). Fluorescent techniques were used to locate focal adhesions (typically 1 μm2 in size) under various shearing conditions, showing that cells increase the number of focal contacts in the region facing the flow. To analyze such data, we propose a model to determine the critical stress, resulting from the competition between hydrodynamic forces and the adhesive cell resistance. With this model, typical adhesive stresses exerted at each focal contact can be determined and are in agreement with previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Ambrosi D, Duperray A, Peschetola V, Verdier C (2009) Traction patterns of tumor cells. J Math Biol 58:163–181

    Article  PubMed  CAS  Google Scholar 

  • Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, Geiger B (2001) Force and focal adhesion assembly: a close relationship studied using elastic micro-patterned substrates. Nat Cell Biol 3:466–472

    Article  PubMed  CAS  Google Scholar 

  • Bershadsky AD, Balaban NQ, Geiger B (2003) Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol 19:677–695

    Article  PubMed  CAS  Google Scholar 

  • Bohnet S, Ananthakrishnan R, Mogilner A, Meister JJ, Verkhovsky AB (2006) Weak force stalls protrusion at the leading edge of the lamellipodium. Biophys J 90:1810–1820

    Article  PubMed  CAS  Google Scholar 

  • Butler JP, Tollic-Norrelykke IM, Fabry B, Fredberg J (2002) Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Physiol 282:C595–C1605

    CAS  Google Scholar 

  • Cao J, Donell B, Deaver DR, Lawrence MB, Dong C (1998) In vitro side-view imaging technique and analysis of human T-leukemic cell adhesion to ICAM-1 in shear flow. Microvasc Res 55:124–137

    Article  PubMed  CAS  Google Scholar 

  • Chachisvilis M, Zhang YL, Frangos JA (2006) G-protein coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci USA 103:15463–15468

    Article  PubMed  Google Scholar 

  • Chaw KC, Manimaran M, Tay EH, Swaminathan S (2007) Multi-step microfluidic device for studying cancer metastasis. Lab Chip 7:1047–1047

    Article  Google Scholar 

  • Chen CS (2008) Mechanotransduction—a field pulling together. J Cell Sci 121:3285–3292

    Article  PubMed  CAS  Google Scholar 

  • Chotard-Ghodsnia R, Drochon A, Faucheux N, Nagel MD, Grebe R (2002) Effect of shear stress and of transmural pressure on cAMP-dependent responses of cells adhering to a biomaterial. Eur Phys J AP 17:155–162

    Article  Google Scholar 

  • Chotard-Ghodsnia R, Haddad O, Leyrat A, Drochon A, Verdier C, Duperray A (2007) Morphological analysis of tumor cell/endothelial cell interactions under shear flow. J Biomech 40:335–344

    Article  PubMed  Google Scholar 

  • Coughlin MF, Schmid-Schönbein GW (2004) Pseudopod projection and cell spreading of passive leukocytes in response to fluid shear stress. Biophys J 87:2035–2042

    Article  PubMed  CAS  Google Scholar 

  • Dalous J, Burghardt E, Müller-Taubenberger A, Bruckert F, Gerisch G, Bretschneider T (2008) Reversal of cell polarity and actin–myosin cytoskeleton reorganization under mechanical and chemical stimulation. Biophys J 94:1063–1074

    Article  PubMed  CAS  Google Scholar 

  • Das T, Maiti TK, Chakraborty (2008) Traction force microscopy on-chip: shear deformation of fibroblast cells. Lab Chip 8:1308-1318

    Article  PubMed  CAS  Google Scholar 

  • De R, Zemel A, Safran SA (2007) Dynamics of cell orientation. Nat Phys 3:655–659

    Article  CAS  Google Scholar 

  • Decave E, Garrivier D, Bréchet Y, Fourcade B, Brückert F (2002) Shear flow-induced detachment kinetics of dictyostellium discoideum cells from solid substrate. Biophys J 82:2383–2395

    Article  PubMed  CAS  Google Scholar 

  • Dembo M, Wang YL (1999) Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J 76:2307–2316

    Article  PubMed  CAS  Google Scholar 

  • Discher DE, Janmey P, Wang Y (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143

    Article  PubMed  CAS  Google Scholar 

  • Duffy DC, Cooper McDonald J, Schueller OJA, Whitesides GM (1988) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984

    Article  Google Scholar 

  • du Roure O, Saez A, Buguin A, Austin RH, Chavrier P, Silberzan P, Ladoux B (2005) Force mapping in epithelial cell migration. Proc Natl Acad Sci USA 102:2390–2395

    Article  PubMed  CAS  Google Scholar 

  • Gaver DP, Kute SM (1988) A theoretical model study of the influence of fluid stresses on a cell adhering to a microchannel wall. Biophys J 75:721–733

    Article  Google Scholar 

  • Gutierrez E, Groisman A (2007) Quantitative measurements of the strength of adhesion of human neutrophils to a substratum in a microfluidic device. Anal Chem 79:2249–2258

    Article  PubMed  CAS  Google Scholar 

  • Hammer DA, Lauffenburger DA (1987) A dynamical model for receptor-mediated cell adhesion to surfaces. Biophys J 52:475–487

    Article  PubMed  CAS  Google Scholar 

  • Ingber DE (2003) Mechanobiology and diseases of mechanotransduction. Ann Med 35:564–577

    Article  PubMed  Google Scholar 

  • Irima D, Charras G, Agrawal N, Mitchison T, Toner M (2007) Polar stimulation and constrained cell migration in microfluidic channels. Lab Chip 7:1783–1790

    Article  Google Scholar 

  • Jin Q, Verdier C, Singh P, Aubry N, Chotard-Ghodsnia R, Duperray A (2007) Migration and deformation of leukocytes in pressure driven flows. Mech Res Commun 34:411–422

    Article  Google Scholar 

  • Kwon KW, Choi SS, Lee SH, Kim B, Lee SN, Park MC, Kim P, Hwang SY, Suh KY (2007) Label-free, microfluidic separation and enrichment of human breast cancer cells by adhesion difference. Lab Chip 7:1461–1468

    Article  PubMed  CAS  Google Scholar 

  • Lawrence MB, Springer TA (1991) Leukocytes roll on a selectin at physiological flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65:859–873

    Article  PubMed  CAS  Google Scholar 

  • Li B, Xie L, Starr ZC, Yang Z, Lin JL, Wang JHC (2007) Development of micropost force sensor array with culture experiments for determination of cell traction forces. Cell Motil Cytoskelet 22:509–518

    Article  CAS  Google Scholar 

  • Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79:144–152

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Koo LY, Wang WM, Lauffenburger DA, Griffith LG, Jensen KF (2004) Microfluidic shear device for quantitative analysis of cell adhesion. Anal Chem 76:5257–5264

    Article  PubMed  CAS  Google Scholar 

  • Moazzam F, DeLano FA, Zweifach B, Schmid-Schönbein GW (1997) The leukocyte response to fluid stress. Proc Natl Acad Sci USA 94:5338–5343

    Article  PubMed  CAS  Google Scholar 

  • Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10:11–20

    Article  PubMed  CAS  Google Scholar 

  • Paul R, Heil P, Spatz JP, Schwartz US (2008) Propagation of mechanical stress through the actin cytoskeleton toward focal adhesions: model and experiment. Biophys J 94:1470–1482

    Article  PubMed  CAS  Google Scholar 

  • Pierres A, Benoliel AM, Bongrand P (1995) Measuring the lifetime of bonds made between surface-linked molecules. J Biol Chem 270:26586–26592

    Article  PubMed  CAS  Google Scholar 

  • Pozrikidis C (1997) Shear flow over a protuberance on a plane wall. J Eng Math 31:29–42

    Article  Google Scholar 

  • Reinhart-King CA, Dembo M, Hammer DH (2005) The dynamics and mechanics of endothelial cell spreading. Biophys J 89:676–689

    Article  PubMed  CAS  Google Scholar 

  • Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153:1175-1186

    Article  PubMed  CAS  Google Scholar 

  • Saadi W, Wang SJ, Lin F, Jeon NL (2006) A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis. Biomed Microdev 8:109–118

    Article  Google Scholar 

  • Schwartz MA, DeSimone DW (2008) Cell adhesion receptors in mechanotransduction. Curr Opin Cell Biol 20:551–556

    Article  PubMed  CAS  Google Scholar 

  • Sugihara-Seki M (2001) Flow around cells adhered to a microvessel wall. II: comparison to flow around adherent cells in channel flow. Biorheology 38:3–13

    PubMed  CAS  Google Scholar 

  • Théry M, Racine V, Piel M, Pépin A, Dimitrov A, Chen Y, Sibarita J, Bornens M (2006) Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc Natl Acad Sci USA 103:19771-19776

    Article  PubMed  Google Scholar 

  • Thoumine O, Ziegler T, Girard PR, Nerem RM (1995) Elongation of confluent endothelial cells in culture: the importance of fields of force in the associated alterations of their cytoskeletal structure. Exp Cell Research 219:427–441

    Article  CAS  Google Scholar 

  • Verdier C (2003) Review. Rheological properties of living materials: From cells to tissues. J Theor Med 5:67–91

    Google Scholar 

  • Verdier C, Couzon C, Duperray A, Singh P (2009) Modeling cell interactions under flow. J Math Biol 58:235–259

    Article  PubMed  Google Scholar 

  • Wang Y, Dimitrakopoulos P (2006) Nature of the hemodynamic forces exerted on vascular endothelial cells or leukocytes adhering to the surface of blood vessels. Phys Fluids 18:087107

    Article  Google Scholar 

  • Wankhede SP, Du Z, Berg JM, Vaughn MW, Dallas T, Cheng KH, Gollahon L (2006) Cell detachment model for an antibody-based microfluidic cancer screening system. Biotechnol Prog 22:1426–1433

    Article  PubMed  CAS  Google Scholar 

  • White FM (2003) Fluid mechanics. McGraw–Hill, New York

    Google Scholar 

  • Young EWK, Wheeler AR, Simmons CA (2007) Matrix-dependant adhesion of vascular endothelial cells in microfluidic channels. Lab Chip 7:1759–1766

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the European Commission Marie Curie Research Training Network MRTN-CT-2004-503661 “Modeling, mathematical methods and computer simulation of tumor growth and therapy” for its support. Image acquisition was performed using the microscopy facility at the “Institut Albert Bonniot”. This equipment was partly funded by “Association pour la Recherche sur le Cancer” (Villejuif, France) and the “Nanobio program”. We are also thankful to V. M. Laurent for helpful discussions and reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Verdier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Couzon, C., Duperray, A. & Verdier, C. Critical stresses for cancer cell detachment in microchannels. Eur Biophys J 38, 1035–1047 (2009). https://doi.org/10.1007/s00249-009-0506-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0506-1

Keywords

Navigation