Skip to main content

Advertisement

Log in

Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Amongst the diverse and potent biological activities of free fatty acids (FFAs) is the ability to kill or inhibit the growth of bacteria. The antibacterial properties of FFAs are used by many organisms to defend against parasitic or pathogenic bacteria. Whilst their antibacterial mode of action is still poorly understood, the prime target of FFA action is the cell membrane, where FFAs disrupt the electron transport chain and oxidative phosphorylation. Besides interfering with cellular energy production, FFA action may also result from the inhibition of enzyme activity, impairment of nutrient uptake, generation of peroxidation and auto-oxidation degradation products or direct lysis of bacterial cells. Their broad spectrum of activity, non-specific mode of action and safety makes them attractive as antibacterial agents for various applications in medicine, agriculture and food preservation, especially where the use of conventional antibiotics is undesirable or prohibited. Moreover, the evolution of inducible FFA-resistant phenotypes is less problematic than with conventional antibiotics. The potential for commercial or biomedical exploitation of antibacterial FFAs, especially for those from natural sources, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adolph S, Bach S, Blondel M, Cueff A, Moreau M, Pohnert G, Poulet SA, Wichard T, Zuccaro A (2004) Cytotoxicity of diatom-derived oxylipins in organisms belonging to different phyla. J Exp Biol 207:2935–2946

    CAS  Google Scholar 

  • Alamsjah MA, Hirao S, Ishibashi F, Oda T, Fujita Y (2008) Algicidal activity of polyunsaturated fatty acids derived from Ulva fasciata and U. pertusa (Ulvaceae, Chlorophyta) on phytoplankton. J Appl Phycol 20:713–720

    CAS  Google Scholar 

  • Arzul G, Gentien P, Bodennec G, Toularastel F, Youenou A, Crassous MP (1995) Comparison of toxic effects in Gymnodinium cf. nagasakiense polyunsaturated fatty acids. In: Lassus P, Arzul G, Erard E, Genien P, Marcaillou C (eds) Harmful marine algal blooms. Intercept, Andover, pp 257–287

    Google Scholar 

  • Beck V, Jabůrek M, Demina T, Rupprecht A, Porter RK, Ježek P, Pohl EE (2007) Polyunsaturated fatty acids activate human uncoupling proteins 1 and 2 in planar lipid bilayers. FASEB J 21:1137–1144

    CAS  Google Scholar 

  • Benkendorff K, Davis AR, Rogers CN, Bremner JB (2005) Free fatty acids and sterols in the benthic spawn of aquatic molluscs, and their associated antimicrobial properties. J Exp Mar Biol Ecol 316:29–44

    CAS  Google Scholar 

  • Bergsson G, Arnfinnsson J, Karlsson SM, Steingrímsson Ó, Thormar H (1998) In vitro inactivation of Chlamydia trachomatis by fatty acids and monoglycerides. Antimicrob Agents Chemother 42:2290–2294

    CAS  Google Scholar 

  • Bergsson G, Steingrímsson Ó, Thormar H (1999) In vitro susceptibilities of Neisseria gonorrhoeae to fatty acids and monoglycerides. Antimicrob Agents Chemother 43:2790–2792

    CAS  Google Scholar 

  • Bergsson G, Arnfinnsson J, Steingrímsson Ó, Thormar H (2001) Killing of Gram-positive cocci by fatty acids and monoglycerides. APMIS 109:670–678

    CAS  Google Scholar 

  • Borowitzka MA (1988) Fats, oils and hydrocarbons. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 257–287

    Google Scholar 

  • Borst P, Loos JA, Christ EJ, Slater EC (1962) Uncoupling activity of long-chain fatty acids. Biochim Biophys Acta 62:509–518

    CAS  Google Scholar 

  • Boyaval P, Corre C, Dupuis C, Roussel E (1995) Effects of free fatty acids on propionic acid bacteria. Lait 75:17–29

    CAS  Google Scholar 

  • Carson DD, Daneo-Moore L (1980) Effects of fatty acids on lysis of Streptococcus faecalis. J Bacteriol 141:1123–1126

    Google Scholar 

  • Chamberlain NR, Mehrtens BG, Xiong Z, Kapral FA, Boardman JL, Rearick JI (1991) Correlation of carotenoid production, decreased membrane fluidity, and resistance to oleic acid killing in Staphylococcus aureus 18Z. Infect Immun 59:4332–4337

    CAS  Google Scholar 

  • Chisti Y (2008) Response to Reijnders: do biofuels from microalgae beat biofuels from terrestrial plants? Trend Biotechnol 26:351–352

    CAS  Google Scholar 

  • Clarke SR, Mohamed R, Bian L, Routh AF, Kokai-Kun JF, Mond JJ, Tarkowski A, Foster SJ (2007) The Staphylococcus aureus surface protein isdA mediates resistance to innate defenses of human skin. Cell Host Microb 1:1–14

    Google Scholar 

  • Clinical and Laboratory Standards Institute (2000) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard M7–A5, 5th edn. Wayne, PA

    Google Scholar 

  • Curtis RF, Coxon DT, Levett G (1974) Toxicity of fatty acids in assays for mycotoxins using the brine shrimp (Artemia salina). Food Cosmet Toxicol 12:233–235

    CAS  Google Scholar 

  • Cutignano A, d’Ippolito G, Romano G, Lamari N, Cimino G, Febbraio F, Nucci R, Fontana A (2006) Chloroplastic glycolipids fuel aldehyde biosynthesis in the marine diatom Thalassiosira rotula. Chem Bio Chem 7:450–456

    CAS  Google Scholar 

  • Cybulski LE, Albanesi D, Mansilla MC, Altabe S, Aguilar PS, de Mendoza D (2002) Mechanism of membrane fluidity optimization: isothermal control of the Bacillus subtilis acyl-lipid desaturase. Mol Microbiol 45:1379–1388

    CAS  Google Scholar 

  • Davies DG, Marques CNH (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–1403

    CAS  Google Scholar 

  • de la Noue J, De Pauw N (1988) The potential of microalgal biotechnology: a review of production and uses of microalgae. Biotech Adv 6:725–770

    Google Scholar 

  • Desbois AP, Lebl T, Yan L, Smith VJ (2008) Isolation and structural characterisation of two antibacterial free fatty acids from the marine diatom, Phaeodactylum tricornutum. Appl Microbiol Biotechnol 81:755–764

    CAS  Google Scholar 

  • Desbois AP, Mearns-Spragg A, Smith VJ (2009) A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Mar Biotechnol 11:45–52

    CAS  Google Scholar 

  • Dibner JJ, Richards JD (2005) Antibiotic growth promoters in agriculture: history and mode of action. Poultry Sci 84:634–643

    CAS  Google Scholar 

  • Dierick NA, Decuypere JA, Molly K, Van Beek E, Vanderbeke E (2002) The combined use of triacylglycerides (TAGs) containing medium chain fatty acids (MCFAs) and exogenous lipolytic enzymes as an alternative to nutritional antibiotics in piglet nutrition. II. In vivo release of MCFAs in gastric cannulated and slaughtered piglets by endogenous and exogenous lipases; effects on the luminal gut flora and growth performance. Livest Prod Sci 76:1–16

    Google Scholar 

  • Dohme F, Machmüller A, Wasserfallen A, Kreuzer M (2001) Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets. Lett Appl Microbiol 32:47–51

    CAS  Google Scholar 

  • Drake DR, Brogden KA, Dawson DV, Wertz PW (2008) Antimicrobial lipids at the skin surface. J Lipid Res 49:4–11

    CAS  Google Scholar 

  • European Union (2005) On additives for use in animal nutrition. Commission Regulation (EC) No 378/2005 of 4 March 2005.

  • Feldlaufer MF, Knox DA, Lusby WR, Shimanuki H (1993) Antimicrobial activity of fatty acids against Bacillus larvae, the causative agent of American foulbrood disease. Apidologie 24:95–99

    CAS  Google Scholar 

  • Finstad HS, Kolset SO, Holme JA, Wiger R, Farrants AKO, Blomhoff R, Drevon CA (1994) Effect of n-3 and n-6 fatty-acids on proliferation and differentiation of promyelocytic leukemic HL-60 cells. Blood 84:3799–3809

    CAS  Google Scholar 

  • Fluhr JW, Kao J, Jain M, Ahn SK, Feingold KR, Elias PM (2001) Generation of free fatty acids from phospholipids regulates stratum corneum acidification and integrity. J Invest Dermatol 117:44–51

    CAS  Google Scholar 

  • Fu M, Koulman A, van Rijssel M, Lützen A, de Boer MK, Tyl MR, Liebezeit G (2004) Chemical characterisation of three haemolytic compounds from the microalgal species Fibrocapsa japonica (Raphidophyceae). Toxicon 43:355–363

    CAS  Google Scholar 

  • Galbraith H, Miller TB (1973a) Physiological effects of long chain fatty acids on bacterial cells and their protoplasts. J Appl Bacteriol 36:647–658

    CAS  Google Scholar 

  • Galbraith H, Miller TB (1973b) Effect of long chain fatty acids on bacterial respiration and amino acid uptake. J Appl Bacteriol 36:659–675

    CAS  Google Scholar 

  • Galbraith H, Miller TB (1973c) Effect of metal cations and pH on the antibacterial activity and uptake of long chain fatty acids. J Appl Bacteriol 36:635–646

    CAS  Google Scholar 

  • Galbraith H, Miller TB, Paton AM, Thompson JK (1971) Antibacterial activity of long chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol. J Appl Bacteriol 34:803–813

    CAS  Google Scholar 

  • Georgel P, Crozat K, Lauth X, Makrantonaki E, Seltmann H, Sovath S, Hoebe K, Du X, Rutschmann S, Jiang Z, Bigby T, Nizet V, Zouboulis CC, Beutler B (2005) A toll-like receptor 2-responsive lipid effector pathway protects mammals against skin infections with Gram-positive bacteria. Infect Immun 73:4512–4521

    CAS  Google Scholar 

  • Greenway DLA, Dyke KGH (1979) Mechanism of the inhibitory action of linoleic acid on the growth of Staphylococcus aureus. J Gen Microbiol 115:233–245

    CAS  Google Scholar 

  • Guil-Guerrero JL, Giménez-Giménez A, Robles-Medina A, del Mar Rebolloso-Fuentes M, Belarbi E-H, Esteban-Cerdán L, Molina-Grima E (2001) Hexane reduces peroxidation of fatty acids during storage. Eur J Lipid Sci Technol 103:271–278

    CAS  Google Scholar 

  • Gutteridge JMC, Lamport P, Dormandy TL (1974) Autoxidation as a cause of antibacterial activity in unsaturated fatty acids. J Med Microbiol 7:387–389

    CAS  Google Scholar 

  • Hamel FG (2009) Preliminary report: inhibition of cellular proteasome activity by free fatty acids. Metabolism 58:1047–1049

    CAS  Google Scholar 

  • Harada K-I, Suomalainen M, Uchida H, Masui H, Ohmura K, Kiviranta J, Niku-Paavola M-L, Ikemoto T (2000) Insecticidal compounds against mosquito larvae from Oscillatoria agardhii strain 27. Environ Toxicol 15:114–119

    CAS  Google Scholar 

  • Hazell SL, Graham DY (1990) Unsaturated fatty acids and the viability of Helicobacter (Campylobacter) pylori. J Clin Microbiol 28:1060–1061

    CAS  Google Scholar 

  • Heczko PB, Lütticken R, Hryniewicz W, Neugebauer M, Pulverer G (1979) Susceptibility of Staphylococcus aureus and group A, B, C, and G streptococci to free fatty acids. J Clin Microbiol 9:333–335

    CAS  Google Scholar 

  • Hemsworth GR, Kochan I (1978) Secretion of antimycobacterial fatty acids by normal and activated macrophages. Infect Immun 19:170–177

    CAS  Google Scholar 

  • Hilmarsson H, Larusson LV, Thormar H (2006) Virucidal effect of lipids on visna virus, a lentivirus related to HIV. Arch Virol 151:1217–1224

    CAS  Google Scholar 

  • Hogan JS, Pankey JW, Duthie AH (1987) Growth inhibition of mastitis pathogens by long-chain fatty acids. J Dairy Sci 70:927–934

    CAS  Google Scholar 

  • Hornitzky M (2003) Fatty acids—an alternative control strategy for honey bee diseases. A report for the Rural Industries Research and Development Corporation. Publication no. 03/028. Rural Industries Research and Development Corporation, Barton, Australia.

  • Ikawa M, Sasner JJ, Haney JF (1997) Inhibition of Chlorella growth by degradation and related products of linoleic and linolenic acids and the possible significance of polyunsaturated fatty acids in phytoplankton ecology. Hydrobiologia 356:143–148

    CAS  Google Scholar 

  • Isaacs CE, Litov RE, Thormar H (1995) Antimicrobial activity of lipids added to human milk, infant formula, and bovine milk. J Nutr Biochem 6:362–366

    CAS  Google Scholar 

  • Jensen RA, Morse DE, Petty RL, Hooker N (1990) Artificial induction of larval metamorphosis by free fatty acids. Mar Ecol Prog Ser 67:55–71

    CAS  Google Scholar 

  • Jüttner F (2001) Liberation of 5, 8, 11, 14, 17-eicosapentaenoic acid and other polyunsaturated fatty acids from lipids as a grazer defense reaction in epilithic diatom biofilms. J Phycol 37:744–755

    Google Scholar 

  • Kabara JJ (1979) Toxicological, bacteriocidal and fungicidal properties of fatty acids and some derivatives. J Am Oil Chem Soc 56:760A–767A

    CAS  Google Scholar 

  • Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP (1972) Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother 2:23–28

    CAS  Google Scholar 

  • Kabara JJ, Vrable R, Lie Ken Jie MSF (1977) Antimicrobial lipids: natural and synthetic fatty acids and monoglycerides. Lipids 12:753–759

    CAS  Google Scholar 

  • Kakisawa H, Asari F, Kusumi T, Toma T, Sakurai T, Oohusa T, Hara Y, Chihara M (1988) An allelopathic fatty acid from the brown alga Cladosiphon okamuranus. Phytochemistry 27:731–735

    CAS  Google Scholar 

  • Kankaanpää P, Yang B, Kallio H, Isolauri E, Salminen S (2004) Effects of polyunsaturated fatty acids in growth medium on lipid composition and on physicochemical surface properties of lactobacilli. Appl Environ Microbiol 70:129–136

    Google Scholar 

  • Kenny JG, Ward D, Josefsson E, Jonsson I-M, Hinds J, Rees HH, Lindsay JA, Tarkowski A, Horsburgh MJ (2009) The Staphylococcus aureus response to unsaturated long chain free fatty acids: survival mechanisms and virulence implications. PLoS One 4:e4344

    Google Scholar 

  • Khan WA, Blobe GC, Hannun YA (1995) Arachidonic acid and free fatty acids as second messengers and the role of protein kinase C. Cell Signal 7:171–184

    CAS  Google Scholar 

  • Knapp HR, Melly MA (1986) Bactericidal effects of polyunsaturated fatty acids. J Infect Dis 154:84–94

    CAS  Google Scholar 

  • Ko HL, Heczko PB, Pulverer G (1978) Differential susceptibily of Propionibacterium acnes. P. granulosum and P. avidum to free fatty acids. J Invest Dermatol 71:363–365

    CAS  Google Scholar 

  • Kodicek E, Worden AN (1945) The effect of unsaturated fatty acids on Lactobacillus helveticus and other Gram-positive micro-organisms. Biochem J 39:78–85

    CAS  Google Scholar 

  • Kristmundsdóttir T, Árnadóttir SG, Bergsson G, Thormar H (1999) Development and evaluation of microbicidal hydrogels containing monoglyceride as the active ingredient. J Pharm Sci 88:1011–1015

    Google Scholar 

  • Küpper FC, Gaquerel E, Bonenerg E-M, Morath S, Salaün J-P, Potin P (2006) Early events in the perception of lipopolysaccharides in the brown alga Laminaria digitata include an oxidative burst and activation of fatty acid oxidation cascades. J Exp Bot 57:1991–1999

    Google Scholar 

  • Kurihara H, Goto Y, Aida M, Hosokawa M, Takahashi K (1999) Antibacterial activity against cariogenic bacteria and the inhibition of insoluble glucan production by free fatty acids obtained from dried Gloiopeltis furcata. Fish Sci 65:129–132

    CAS  Google Scholar 

  • Lacey RW, Lord VL (1981) Sensitivity of staphylococci to fatty acids: novel inactivation of linolenic acid by serum. J Med Microbiol 14:41–49

    CAS  Google Scholar 

  • Liaw S-J, Lai H-C, Wang W-B (2004) Modulation of swarming and virulence by fatty acids through the rsbA protein in Proteus mirabilis. Infect Immun 72:6836–6845

    CAS  Google Scholar 

  • Lu Z-H, Mu Y-M, Wang B-A, Li X-L, Lu J-M, Li J-Y, Pan C-Y, Yanase T, Nawata H (2003) Saturated free fatty acids, palmitic acid and stearic acid, induce apoptosis by stimulation of ceramide generation in rat testicular Leydig cell. Biochem Biophys Res Commun 303:1002–1007

    CAS  Google Scholar 

  • Lukowski G, Lindequist U, Mundt S, Kramer A, Jülich W-D (2008) Inhibition of dermal MRSA colonisation by microalgal micro- and nanoparticles. Skin Pharmacol Physiol 21:98–105

    CAS  Google Scholar 

  • Marshall J-A, Nichols PD, Hamilton B, Lewis RJ, Hallegraeff GM (2003) Ichthyotoxicity of Chattonella marina (Raphidophyceae) to damselfish (Acanthochromis polycanthus): the synergistic role of reactive oxygen species and free fatty acids. Harmful Algae 2:273–281

    CAS  Google Scholar 

  • McGaw LJ, Jäger AK, van Staden J (2002) Antibacterial effects of fatty acids and related compounds from plants. S Afr J Bot 68:417–423

    CAS  Google Scholar 

  • McGrattan CJ, Sullivan JD Jr, Ikawa M (1976) Inhibition of Chlorella (Chlorophyceae) growth by fatty acids, using the paper disc method. J Phycol 12:129–131

    CAS  Google Scholar 

  • Miller RD, Brown KE, Morse SA (1977) Inhibitory action of fatty acids on the growth of Neisseria gonorrhoeae. Infect Immun 17:303–312

    CAS  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    CAS  Google Scholar 

  • Murakami M, Makabe K, Yamaguchi K, Konosu S (1989) Cytotoxic polyunsaturated fatty acid from Pediastrum. Phytochemistry 28:625–626

    CAS  Google Scholar 

  • Nair MKM, Joy J, Vasudevan P, Hinckley L, Hoagland TA, Venkitanarayanan KS (2005) Antibacterial effect of caprylic acid and monocaprylin on major bacterial mastitis pathogens. J Dairy Sci 88:3488–3495

    Article  CAS  Google Scholar 

  • Nakatsuji T, Kao MC, Fang J-Y, Zouboulis CC, Zhang L, Gallo RL, Huang C-M (2009) Antimicrobial property of lauric acid against Propionibacterium acnes: its therapeutic potential for inflammatory acne vulgaris. J Invest Dermatol 129:2480–2488

    CAS  Google Scholar 

  • Neyts J, Kristmundsdóttir T, De Clercq E, Thormar H (2000) Hydrogels containing monocaprin prevent intravaginal and intracutaneous infections with HSV-2 in mice: impact on the search for vaginal microbicides. J Med Virol 61:107–110

    CAS  Google Scholar 

  • Osawa K, Miyazaki K, Shimura S, Okuda J, Matsumoto M, Ooshima T (2001) Identification of cariostatic substances in the cacao bean husk: their anti-glucosyltransferase and antibacterial activities. J Dent Res 80:2000–2004

    CAS  Google Scholar 

  • Ouattara B, Simard RE, Holley RA, Piette GJ-P, Bégin A (1997) Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. Int J Food Microbiol 37:155–162

    CAS  Google Scholar 

  • Pawlik JR (1986) Chemical induction of larval settlement and metamorphosis in the reef-building tube worm Phragmatopoma californica (Sabellariidae: Polychaeta). Mar Biol 91:59–68

    CAS  Google Scholar 

  • Peters JS, Chin C-K (2003) Inhibition of photosynthetic electron transport by palmitoleic acid is partially correlated to loss of thylakoid membrane proteins. Plant Physiol Biochem 41:117–124

    CAS  Google Scholar 

  • Petschow BW, Batema RP, Ford LL (1996) Susceptibility of Helicobacter pylori to bactericidal properties of medium-chain monoglycerides and free fatty acids. Antimicrob Agents Chemother 40:302–306

    CAS  Google Scholar 

  • Refsgaard HHF, Brockhoff PMB, Jensen B (2000) Free polyunsaturated fatty acids cause taste deterioration of salmon during frozen storage. J Agric Food Chem 48:3280–3285

    CAS  Google Scholar 

  • Reinikainen M, Meriluoto JAO, Spoof L, Harada K-I (2001) The toxicities of a polyunsaturated fatty acid and a microcystin to Daphnia magna. Environ Toxicol 16:444–448

    CAS  Google Scholar 

  • Rickrode TE (1986) Identification and antibiotic activity of fatty acids in dermal secretions of Plethedon cinereus. Am Midl Nat 115:198–200

    CAS  Google Scholar 

  • Rohrer L, Winterhalter KH, Eckert J, Köhler P (1986) Killing of Giardia lamblia by human milk is mediated by unsaturated fatty acids. Antimicrob Agents Chemother 30:254–257

    CAS  Google Scholar 

  • Ruzin A, Novick RP (2000) Equivalence of lauric acid and glycerol monolaurate as inhibitors of signal transduction in Staphylococcus aureus. J Bacteriol 182:2668–2671

    CAS  Google Scholar 

  • Sado-Kamdem SL, Vannini L, Guerzoni ME (2009) Effect of α-linolenic, capric and lauric acid on the fatty acid biosynthesis in Staphylococcus aureus. Int J Food Microbiol 129:288–294

    CAS  Google Scholar 

  • Saito H, Tomioka H, Yoneyama T (1984) Growth of group IV mycobacteria on medium containing various saturated and unsaturated fatty acids. Antimicrob Agents Chemother 26:164–169

    CAS  Google Scholar 

  • Schönfeld P, Wojtczak L (2008) Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic Biol Med 45:231–241

    Google Scholar 

  • Sellem F, Pesando D, Bodennec G, El Abed A, Girard J-P (2000) Toxic effects of Gymnodinium cf. mikimotoi unsaturated fatty acids to gametes and embryos of the sea urchin Paracentrotuc lividus. Wat Res 34:550–556

    CAS  Google Scholar 

  • Shalita AR (1974) Genesis of free fatty acids. J Invest Dermatol 62:332–335

    CAS  Google Scholar 

  • Sheu CW, Freese E (1972) Effects of fatty acids on growth and envelope proteins of Bacillus subtilis. J Bacteriol 111:516–524

    CAS  Google Scholar 

  • Shibasaki I, Kato N (1978) Combined effects on antibacterial activity of fatty acids and their esters against Gram-negative bacteria. In: Kabara JJ (ed) Symposium on the pharmacological effect of lipids. The American Oil Chemists’ Society, Champaign, pp 15–24

    Google Scholar 

  • Shin SY, Bajpai VK, Kim HR, Kang SC (2007) Antibacterial activity of eicosapentaenoic acid (EPA) against foodborne and food spoilage microorganisms. LWT 40:1515–1519

    CAS  Google Scholar 

  • Simor AE, Stuart TL, Louie L, Watt C, Ofner-Agostini M, Gravel D, Mulvey M, Loeb M, McGeer A, Bryce E, Matlow A (2007) Mupirocin-resistant, methicillin-resistant Staphylococcus aureus strains in Canadian hospitals. Antimicrob Agents Chemother 51:3880–3886

    CAS  Google Scholar 

  • Skřivanová E, Molatová Z, Marounek M (2008) Effects of caprylic acid and triacylglycerols of both caprylic and capric acid in rabbits experimentally infected with enteropathogenic Escherichia coli O103. Vet Microbiol 126:372–376

    Google Scholar 

  • Smith DL, Harris AD, Johnson JA, Silbergeld EK, Morris JG Jr (2002) Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc Natl Acad Sci USA 99:6434–6439

    CAS  Google Scholar 

  • Speert DP, Wannamaker LW, Gray ED, Clawson CC (1979) Bactericidal effect of oleic acid on group A streptococci: mechanism of action. Infect Immun 26:1202–1210

    CAS  Google Scholar 

  • Stenz L, François P, Fischer A, Huyghe A, Tangomo M, Hernandez D, Cassat J, Linder P, Schrenzel J (2008) Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus. FEMS Microbiol Lett 287:149–155

    CAS  Google Scholar 

  • Stephan A, Steinhart H (2000) Bitter taste of unsaturated free fatty acids in emulsions: contribution to the off-flavour of soybean lecithins. Eur Food Res Technol 212:17–25

    CAS  Google Scholar 

  • Stulnig TM, Huber J, Leitinger N, Imre E-M, Angelisová NP, Waldhäusl W (2001) Polyunsaturated eicosapentaenoic acid displaces proteins from membrane rafts by altering raft lipid composition. J Biol Chem 276:37335–37340

    CAS  Google Scholar 

  • Sun CQ, O’Connor CJ, Roberton AM (2003) Antibacterial actions of fatty acids and monoglycerides against Helicobacter pylori. FEMS Immunol Med Microbiol 36:9–17

    CAS  Google Scholar 

  • Takigawa H, Nakagawa H, Kuzukawa M, Mori H, Imokawa G (2005) Deficient production of hexadecenoic acid in the skin is associated in part with the vulnerability of atopic dermatitis patients to colonisation by Staphylococcus aureus. Dermatology 211:240–248

    CAS  Google Scholar 

  • Thompson L, Cockayne A, Spiller RC (1994) Inhibitory effect of polyunsaturated fatty acids on the growth of Helicobacter pylori: a possible explanation of the effect of diet on peptic ulceration. Gut 35:1557–1561

    CAS  Google Scholar 

  • Thormar H, Hilmarsson H (2007) The role of microbicidal lipids in host defense against pathogens and their potential as therapeutic agents. Chem Phys Lipids 150:1–11

    CAS  Google Scholar 

  • Thormar H, Isaacs CE, Brown HR, Barshatzky MR, Pessolano T (1987) Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrob Agents Chemother 31:27–31

    CAS  Google Scholar 

  • Thormar H, Bergsson G, Gunnarsson E, Georgsson G, Witvrouw M, Steingrímsson Ó, De Clercq E, Kristmundsdóttir T (1999) Hydrogels containing monocaprin have potent microbicidal activities against sexually transmitted viruses and bacteria in vitro. Sex Transm Inf 75:181–185

    CAS  Google Scholar 

  • Thormar H, Hilmarsson H, Bergsson G (2006) Stable concentrated emulsions of the 1-monoglyceride of capric acid (moncaprin) with microbicidal activities against the food-borne bacteria Campylobacter jejuni, Salmonella spp., and Escherichia coli. Appl Environ Microbiol 72:522–526

    CAS  Google Scholar 

  • Tsuchido T, Hiraoka T, Takano M, Shibasaki I (1985) Involvement of autolysin in cellular lysis of Bacillus subtilis induced by short- and medium-chain fatty acids. J Bacteriol 162:42–46

    CAS  Google Scholar 

  • Ungerfeld EM, Rust SR, Burnett RJ, Yokoyama MT, Wang JK (2005) Effects of two lipids on in vitro ruminal methane production. Animal Feed Sci Technol 119:179–185

    CAS  Google Scholar 

  • U.S. Food and Drug Administration (1997) Substances affirmed as generally recognized as safe: menhaden oil. Federal Register 62:30751–30757

    Google Scholar 

  • van Rijen M, Bonten M, Wenzel R, Kluytmans J (2008) Mupirocin ointment for preventing Staphylococcus aureus infections in nasal carriers. Cochrane Database Syst Rev 4. doi:10.1002/14651858.CD006216.pub2. Accessed 18 May 2009

  • Wang L-L, Johnson EA (1992) Inhibition of Listeria monocytogenes by fatty acids and monoglycerides. Appl Environ Microbiol 58:624–629

    CAS  Google Scholar 

  • Weber H (2002) Fatty acid-derived signals in plants. Trend Plant Sci 7:217–224

    CAS  Google Scholar 

  • Wichard T, Gerecht A, Boersma M, Poulet SA, Wiltshire K, Pohnert G (2007) Lipid and fatty acid composition of diatoms revisited: rapid wound-activated change of food quality parameters influences herbivorous copepod reproductive success. Chem Bio Chem 8:1146–1153

    CAS  Google Scholar 

  • Więckowski MR, Wojtczak L (1998) Fatty acid-induced uncoupling of oxidative phosphorylation is partly due to opening of the mitochondrial permeability transition pore. FEBS Lett 423:339–342

    Google Scholar 

  • Wille JJ, Kydonieus A (2003) Palmitoleic acid isomer (C16:1Δ6) in human skin sebum is effective against Gram-positive bacteria. Skin Pharmacol Appl Skin Physiol 16:176–187

    CAS  Google Scholar 

  • Willett NP, Morse GE (1966) Long-chain fatty acid inhibition of growth of Streptococcus agalactiae in a chemically defined medium. J Bacteriol 91:2245–2250

    CAS  Google Scholar 

  • Wojtczak L, Więckowski MR (1999) The mechanisms of fatty acid-induced proton permeability of the inner mitochondrial membrane. J Bioenerg Biomembr 31:447–455

    CAS  Google Scholar 

  • Won S-R, Hong M-J, Kim Y-M, Li CY, Kim J-W, Rhee H-I (2007) Oleic acid: an efficient inhibitor of glucosyltransferase. FEBS Lett 581:4999–5002

    CAS  Google Scholar 

  • Wu J-T, Chiang Y-R, Huang W-Y, Jane W-N (2006) Cytotoxic effects of free fatty acids on phytoplankton algae and cyanobacteria. Aquat Toxicol 80:338–345

    CAS  Google Scholar 

  • Xiong Z, Kapral FA (1992) Carotenoid pigment levels in Staphylococcus aureus and sensitivity to oleic acid. J Med Microbiol 37:192–194

    CAS  Google Scholar 

  • Yang D, Pornpattananangkul D, Nakatsuji T, Chan M, Carson D, Huang C-M, Zheng L (2009) The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes. Biomaterials 30:6035–6040

    CAS  Google Scholar 

  • Yff BTS, Lindsey KL, Taylor MB, Erasmus DG, Jäger AK (2002) The pharmacological screening of Pentanisia prunelloides and the isolation of the antibacterial compound palmitic acid. J Ethnopharmacol 79:101–107

    CAS  Google Scholar 

  • Zhao X, Drlica K (2001) Restricting the selection of antibiotic-resistant mutants: a general strategy derived from fluoroquinolone studies. Clin Infect Dis 33(Suppl 3):147–156

    Google Scholar 

  • Zheng CJ, Yoo JS, Lee TG, Cho HY, Kim YH, Kim WG (2005) Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett 579:5157–5162

    CAS  Google Scholar 

Download references

Acknowledgments

APD wishes to acknowledge financial support from the Wellcome Trust through the Value in People (VIP) award scheme. The authors thank Dr. Rob Hagan (University of St Andrews) for his helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie J. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desbois, A.P., Smith, V.J. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 85, 1629–1642 (2010). https://doi.org/10.1007/s00253-009-2355-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2355-3

Keywords

Navigation